← 返回
光伏发电技术
★ 5.0
一种基于电致发光图像的光伏电池稀有缺陷定位新少样本检测器
A novel few-shot detector for rare defect localization in photovoltaic cells using electroluminescence images
| 作者 | Qing Liu · Min Liu · Q.M. Jonathan Wu · Weiming Shen |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 296 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | We propose a novel few-shot detector for RPVCDL. |
语言:
中文摘要
准确检测光伏(PV)电池中的缺陷对于保障光伏发电系统长期稳定运行至关重要。现有的基于深度学习的方法已广泛应用于利用电致发光图像进行光伏电池缺陷检测。然而,这些方法严重依赖大量标注数据,因此在处理可用数据较少的稀有缺陷时,其有效性受到限制。为解决这一问题,本文提出了一种名为OURS_RARE_PV的新方法,用于稀有光伏电池缺陷的定位。具体而言,OURS_RARE_PV采用了一种基于迁移学习的少样本目标检测框架。首先,引入对比学习损失以放大不同类别之间的差异,并增强单个类别内部的相似性,从而获得更具判别性的特征表示,使来自不同类别的样本更易于区分。接着,我们设计了知识补偿模块,以应对微调过程中因参数更新导致的基础缺陷类别知识遗忘问题。该模块通过引入一个具有冻结参数的额外分支,在训练过程中解耦训练与测试过程,从而保留基础缺陷类别的知识。此外,我们构建了一个名为few-shot PVEL_AD的新数据集。最后,OURS_RARE_PV在few-shot PVEL_AD数据集上进行了评估,实验涵盖了两种不同场景下的多种样本设置。与其他方法相比,OURS_RARE_PV取得了最佳性能,验证了其优越性。代码可在以下地址获取:https://github.com/Researcher-TJER/OURS_RARE_PV 。
English Abstract
Abstract Accurate defect detection in Photovoltaic (PV) cells is vital for ensuring the long-term stable operation of PV power generation systems . Existing deep learning based methods are widely utilized in PV cell defect detection using Electroluminescence images. However, these methods heavily depend on a substantial amount of annotated data, and thus their effectiveness is limited when dealing with rare defects that have less available data. To address this issue, a novel method called OURS_RARE_PV is proposed for rare PV cell defect localization. In particular, OURS_RARE_PV utilizes a transfer learning based few-shot object detection framework. Firstly, contrastive learning loss is employed to amplify the distinctions among different classes and strengthen the similarities within a single class, leading to more discriminative feature representations that make samples from various classes more easily distinguishable. Next, we design the knowledge compensation module to address base defect class knowledge forgetting, caused by parameter updates during fine-tuning. It decouples training and testing by introducing an additional branch with frozen parameters to preserve base defect class knowledge during training. Furthermore, we establish a new dataset named few-shot PVEL_AD. Finally, OURS_RARE_PV was evaluated on the few-shot PVEL_AD dataset, using different sample settings across two different scenarios. Compared to other methods, OURS_RARE_PV achieved the best performance, demonstrating its superiority. Code is available at: https://github.com/Researcher-TJER/OURS_RARE_PV .
S
SunView 深度解读
该罕见缺陷检测技术对阳光电源SG系列光伏逆变器及iSolarCloud智慧运维平台具有重要应用价值。通过少样本学习框架和对比学习损失函数,可有效识别电池片EL图像中的稀有缺陷类型,解决传统深度学习依赖大量标注数据的局限。该方法可集成至iSolarCloud预测性维护系统,提升光伏电站异常诊断准确率,特别是针对低频次但高风险的隐裂、热斑等缺陷。知识补偿模块的设计思路也可借鉴用于优化MPPT算法中的异常工况识别,增强系统长期稳定运行能力,降低运维成本。