← 返回
光伏发电技术 ★ 5.0

三波段光谱分束光伏-光热驱动SOEC制氢系统的分析

Analysis of a three-band spectrum splitting photovoltaic-photothermal driven SOEC hydrogen production system

语言:

中文摘要

摘要 为实现全光谱太阳能的级联转换以及电能与热能互补制氢,本研究提出一种新型太阳能三波段光谱分束光伏-光热驱动固体氧化物电解池(SOEC)制氢系统。基于不同光能品质对太阳光谱进行三波段分束,分别用于光伏发电和聚光集热,所产生的电能与热能共同输入SOEC系统。本研究建立了太阳能光谱分束与SOEC耦合系统的热力学模型,系统研究了SOEC运行参数(包括工作温度和电流密度)以及光谱分束参数(包括聚光比和光谱分束波长)对系统太阳能至氢能转换效率的耦合影响。在参数优化后,系统在所研究条件下最大能量效率达到47.38%,相较于未分束系统效率提升5–7个百分点。进一步将该系统与超临界二氧化碳(S-CO2)布雷顿循环结合进行优化,使光谱分束波长更加稳定,在光谱分束后光伏电池效率提升约10个百分点,并提高了低温SOEC工况下的系统整体能量效率。此外,相较于未分束系统,该光谱分束系统在制氢平准化成本方面也展现出更优的经济性能。本研究为太阳能光谱分束技术与制氢系统的耦合集成提供了理论指导和技术路径。

English Abstract

Abstract To achieve cascade conversion of the full-spectrum solar energy and the complementary production of hydrogen from electric and thermal energy, this study proposes a new solar three-band spectrum-splitting photovoltaic-photothermal driven SOEC hydrogen production system. Three-band spectrum-splitting of solar spectrum is conducted basing on the different light energy qualities, which are used for photovoltaic and concentrated heat collection, then the electrical and thermal energy are input into SOEC system. This study develops a thermodynamic model of a solar spectrum splitting and SOEC system, and it investigates the coupled effects of SOEC parameters, including operating temperature and current density, and solar spectrum splitting parameters, including concentration ratio and spectrum splitting wavelength, on the system solar-to-hydrogen energy efficiency. After optimizing the parameters, the maximum efficiency achieved 47.38% within the investigated conditions, and the energy efficiency increase by 5–7 percentage points compared with non-splitting system. The system was further optimized by combining the S-CO 2 Brayton cycle, which makes the spectrum splitting wavelength more stable, improves the efficiency of photovoltaic cells by 10 percentage points after the spectrum splitting and increases the energy efficiency under low-temperature SOEC conditions. The spectrum-splitting system also showed advantages in economic performance compared to non-splitting system on the levelized cost of hydrogen. This study provides guidance for the combination of solar spectrum splitting with hydrogen production.
S

SunView 深度解读

该光谱分频光伏-光热耦合制氢技术为阳光电源SG系列光伏逆变器与储能系统集成提供创新方向。通过三波段光谱分频实现47.38%太阳能制氢效率,比非分频系统提升5-7个百分点,验证了多能互补策略的有效性。其SOEC电热协同控制思路可借鉴至PowerTitan储能系统的能量管理优化,特别是在光伏直流耦合制氢场景中,SG逆变器的MPPT算法可针对分频后光谱特性进行自适应优化。该系统的经济性优势为阳光电源拓展绿氢产业链、开发光储氢一体化解决方案提供技术支撑,iSolarCloud平台可集成光谱监测与制氢效率预测功能。