← 返回
光伏发电技术 ★ 4.0

下一代光热电站颗粒/超临界CO2流化床换热系统的设计与性能研究

Design and performance study of the particle/supercritical CO2 fluidized bed heat exchanger system for next generation CSP plant

语言:

中文摘要

摘要 本文提出并构建了首套兆瓦级(MWth)用于下一代聚光太阳能发电(CSP)电站的颗粒/超临界二氧化碳(sCO2)流化床换热系统。在该CSP电站中,固体颗粒被选作太阳能集热器的吸热介质,并通过换热器将热量传递给sCO2,随后被加热的sCO2进入透平做功。换热器本体采用流化床结构,其中sCO2管束在流化空气的作用下从高温颗粒中吸收热量。颗粒沿换热器壁面流动,sCO2在两个箱体内部自上而下流动,流化空气被循环利用以提高系统的换热效率。本文详细描述了系统的整体结构设计。实验于2021年起在中国北京延庆开展,实验结果表明:当颗粒温度达到685°C时,CO2出口温度为552°C,换热器效率为83.2%,换热功率为1045 kW,计算得到的总传热系数最大值为103.6 W/m²·K。同时开展了数值模拟,分析了换热器内的颗粒速度分布、温度场分布以及整体换热效率。本研究为结合sCO2布雷顿循环的下一代CSP电站系统的设计与运行方法提供了有价值的参考依据。

English Abstract

Abstract This paper proposes and builds the first megawatt thermal (MWth) class particle/supercritical carbon dioxide (sCO 2 ) fluidized bed heat exchanger system for next generation concentrated solar power (CSP) plant. In this CSP plant, particles were chosen as the heat absorbing medium for solar collectors, and transfered heat to sCO 2 through the heat exchanger, and then the heated sCO 2 enters the turbine to work. The heat exchanger body is in a form of fluidized bed where the sCO 2 tube bundle absorb heat from the high-temperature particles under the action of fluidized air. Particles flow around the wall in the heat exchanger, and sCO 2 flows from top to bottom within the two bins, and fluidized air is recycled to improve the heat exchanger efficiency of the system. The overall structural design of the system are described in detail. The experiments were run beginning from 2021 in Beijing Yanqing, China, and experimental results showed that at the CO 2 outlet temperature is 552 °C, the efficiency is 83.2 % and the power of the heat exchanger is 1045 kW when the temperature of particles reached 685 °C, and the maximum value of the overall heat transfer coefficient was calculated to be 103.6 W/m 2 ∙K. Numerical simulation is conducted to analyze the particle velocities, temperature distributions, and overall heat efficiency in the heat exchanger. This research provides the valuable insights for the design and operation methods of next generation CSP plant combined with sCO 2 Brayton cycle.
S

SunView 深度解读

该颗粒/超临界CO2流化床换热技术为下一代光热电站提供了高效热能转换方案,出口温度达552°C、效率83.2%,对阳光电源储能系统具有重要参考价值。其高温储热与sCO2布雷顿循环结合的思路,可启发ST系列储能变流器在光热-储能耦合场景的拓展应用。该系统的热管理技术和高效换热设计,对PowerTitan等大型储能系统的热控优化及iSolarCloud平台的多能互补智慧运维具有借鉴意义,助力构建光热-光伏-储能一体化解决方案。