← 返回
光伏发电技术 ★ 5.0

浮式光伏系统中浮筒设计参数的一维瞬态热建模与分析

One-dimensional transient thermal modelling and analysis of pontoon design parameters in floating photovoltaic systems

语言:

中文摘要

摘要 本研究模拟了浮式光伏组件在不同辐照度平面、风速、空气温度和水温条件下的热行为。采用一种瞬态一维有限差分模型计算电池温度、效率和输出功率。该模型利用南非斯泰伦博斯一处浮式光伏系统连续46天的实验数据进行验证,预测背板温度的均方根误差为4.00°C,决定系数R² = 0.91。在稳定和波动的辐照条件下,分别观察到R² = 0.92和R² = 0.90的强相关性。研究发现,较高的浮筒温度(TP > Tair > TW)会削弱水体邻近带来的热效益。通过因子设计敏感性分析,考察了组件倾角、浮筒发射率、浮筒相对表面积、组件距水面高度及其交互作用对电池温度的影响。其中,浮筒表面积的敏感性最高,平均变化为0.22°C/%,其次为倾角;浮筒发射率的敏感性较低但仍显著,为0.05°C/%。同时识别出若干重要的参数交互效应。对无浮筒浮式光伏系统的建模结果显示,在整个数据集中,组件平均效率提高了0.21%(最大提高0.39%),能量输出提升了1.28%,突显了浮筒设计在优化此类系统热性能和整体效率中的关键作用。

English Abstract

Abstract This study simulates the thermal behaviour of floating photovoltaic modules under varying conditions of plane-of-array irradiance, wind speed, air temperature, and water temperature. A transient, one-dimensional finite difference model calculates cell temperature, efficiency, and power output. Validated using 46 days of experimental data from a floating photovoltaic system in Stellenbosch, South Africa, the model predicts back surface temperatures with a root mean square error of 4 . 00 °C and R 2 = 0 . 91. Strong correlations of R 2 = 0 . 92 and R 2 = 0 . 90 are observed under consistent and fluctuating irradiance conditions, respectively. Elevated pontoon temperatures ( T P > T air > T W ) are found to reduce the thermal benefits of water proximity. A factorial design sensitivity analysis examines the influence of module tilt angle, pontoon emissivity, relative pontoon surface area, module height above water, and their interactions on cell temperature. Pontoon surface area shows the highest sensitivity, with an average change of 0.22 °C / %, followed by tilt angle. Pontoon emissivity has a lower but notable sensitivity of 0.05 °C / %. Significant parameter interactions are also identified. Modelling a pontoon-less floating photovoltaic system reveals a mean module efficiency increase of 0.21 % (maximum 0.39 %) and a 1 . 28 % rise in energy output across the dataset, highlighting the pivotal role of pontoon design in optimising the thermal performance and overall efficiency of these systems.
S

SunView 深度解读

该研究揭示浮式光伏系统中浮筒设计对组件温度和效率的关键影响,对阳光电源SG系列光伏逆变器在水面电站的应用具有重要价值。研究发现优化浮筒设计可提升组件效率0.21%、能量输出1.28%,这为我司开发水面光伏专用逆变器的MPPT算法优化提供依据。建议结合iSolarCloud平台集成水温、浮筒温度等环境参数监测,通过机器学习预测组件温度变化,动态调整MPPT策略和功率输出曲线,最大化水面光伏系统发电效益,形成差异化竞争优势。