← 返回
光伏发电技术
★ 5.0
基于最优传输理论的光伏电池异常检测精确分类
Precision classification for anomaly detection in photovoltaic cells via optimal transport theory
语言:
中文摘要
摘要 太阳能,特别是光伏发电(PV)系统,在应对气候变化中发挥着至关重要的作用。然而,由于环境因素导致的光伏电池异常,如黑心和裂纹,会显著降低其性能。传统的检测方法通常效率低下且存在风险,而现有的YOLO模型(如YOLOv9)在检测形状或尺寸不规则的异常时也面临挑战。这些异常导致预测置信度低以及分类结果不准确。本文提出了一种用于光伏电池异常检测的精确分类框架,该框架利用最优传输(OT)理论实现。该框架分为两个阶段:在第一阶段,通过在真实标注框内使用k-means聚类特征构建异常原型池;根据异常原型与正常原型之间的余弦相似度选择原型,优先选取与正常区域相似度较低的样本作为异常原型;为确保原型之间的多样性,此阶段引入正交损失函数。在第二阶段,利用OT理论将YOLO预测的边界框与原型进行匹配:首先在边界框特征与原型之间构建余弦相似度矩阵;随后采用Sinkhorn-Knopp算法基于该矩阵生成最优传输方案,从而优化分类得分。这一过程提升了异常分类与定位的准确性。在PVEL-AD数据集上进行的实验表明,将所提框架与YOLOv9结合后,mAP@0.5达到95.8%,相比基线方法提升了2.6%;同时,真阳性率(TPR)提高了1.6%,而假阳性率(FPR)从2.5%下降至1.1%。可视化结果进一步证实了漏检现象减少,且定位精度得到改善。本文还讨论了该框架的可扩展性及其计算开销的权衡问题,验证了其在提升光伏异常检测精度方面的有效性。
English Abstract
Abstract Solar energy, particularly photovoltaic (PV) systems, plays a crucial role in combating climate change . However, PV cell anomalies such as black cores and cracks, caused by environmental factors, significantly degrade their performance. Traditional detection methods are often inefficient and risky, while existing YOLO models like YOLOv9 face challenges in accurately detecting anomalies with irregular shapes or sizes. These anomalies lead to low confidence in predictions and inaccurate classification results . In this paper, a precision classification framework for anomaly detection in PV cells is introduced, leveraging optimal transport (OT) theory. The framework operates in two stages. In the first stage, an anomaly prototype pool is constructed by clustering features within ground-truth boxes using k-means. Anomaly prototypes are selected based on their cosine similarity to normal prototypes, with those exhibiting lower similarity to normal regions being chosen. To ensure diversity among the prototypes, an orthogonal loss is applied during this stage. In the second stage, OT theory is utilized to match YOLO-predicted bounding boxes with the prototypes. A cosine similarity matrix is first created between the bounding box features and the prototypes. The Sinkhorn-Knopp algorithm then generates an OT transport plan based on this matrix, refining the classification scores. This process enhances the accuracy of both anomaly classification and localization. Experiments conducted on the PVEL-AD dataset demonstrate that the proposed framework, when integrated with YOLOv9, achieves a 95.8% mAP@0.5, marking a 2.6% improvement over the baseline method . Additionally, the True Positive Rate (TPR) increases by 1.6%, while the False Positive Rate (FPR) decreases from 2.5% to 1.1%. Visualizations further confirm a reduction in false negatives and improved localization accuracy . The paper also discusses the framework’s scalability and computational trade-offs, validating its effectiveness in enhancing the precision of PV anomaly detection .
S
SunView 深度解读
该光伏组件异常检测技术对阳光电源SG系列逆变器和iSolarCloud智能运维平台具有重要应用价值。基于最优传输理论的精确分类框架可集成至iSolarCloud预测性维护系统,实现黑核、裂纹等异常的自动识别,mAP@0.5达95.8%,误报率降至1.1%。该技术可优化MPPT算法对异常组件的功率追踪策略,提升发电效率。结合无人机巡检和红外成像,可构建全栈式光伏电站智能诊断方案,降低人工巡检成本,提高故障预警准确性,为大规模地面电站和分布式光伏系统提供精准运维支撑。