← 返回
光伏发电技术 ★ 5.0

总辐射表积尘对光伏性能比评估的影响及校正方法

Effect of pyranometer soiling on the PV performance ratio evaluation and correction methods

语言:

中文摘要

摘要 本文研究了总辐射表(pyranometer)积尘对光伏组件性能比(PR)评估准确性的影响,并提出了优化总辐射表清洗周期的方法。通过在印度孟买某站点对比总辐射表与光伏组件的积尘速率,发现总辐射表的积尘速率显著较低,仅为光伏组件积尘速率的36%至48%。总辐射表的积尘导致基于性能比估算的组件积尘速率被低估了30%至43%,从而造成最优清洗时机的延迟识别。这种延迟带来了显著的能量损失和经济损失,这一点在一个100兆瓦光伏电站的案例研究中得到了验证。为解决该问题,本文设定每日辐照度不确定度阈值为1%,符合行业标准,以优化总辐射表的清洗频率。结果表明,孟买的最优清洗间隔为3至4天。此外,本文还针对全球103个地点,结合当地积尘速率,推荐了相应的总辐射表清洗间隔。进一步地,我们分析了总辐射表积尘的日内变化特征,发现利用经过温度修正的性能比,在清晨和傍晚时段进行评估可有效降低由总辐射表积尘引起的误差。所提出的综合方法为减轻总辐射表积尘影响提供了实用指导,有助于提升光伏系统性能评估的可靠性,并优化运维管理计划。

English Abstract

Abstract We investigated the impact of pyranometer soiling on the accuracy of PV module performance ratio (PR) evaluation and also propose methods to optimize cleaning intervals for pyranometers. By comparing the soiling rates of the pyranometer and PV module at a site in Mumbai, India, we found that pyranometer soiling rates were significantly lower, ranging from 36 % to 48 % of PV module soiling rates. Soiling of pyranometers led to an underestimation of module soiling rates from PR by 30–43 %, causing delayed detection of optimal cleaning intervals. This delay resulted in substantial energy and revenue losses, as illustrated by a 100 MW PV plant case study. To address this, a daily irradiance uncertainty threshold of 1 % was established, aligning with industry standards, to optimize pyranometer cleaning frequency. The optimal cleaning interval was determined to be 3–4 days for Mumbai. We also recommend pyranometer cleaning intervals for 103 global locations, considering local soiling rates. Furthermore, we analyzed the diurnal variation in pyranometer soiling. We found that temperature-corrected PR during early morning and late afternoon hours reduces errors caused by pyranometer soiling. The proposed methodology provides practical guidelines to mitigate the effects of pyranometer soiling, enhancing the reliability of PV performance evaluation and optimizing maintenance scheduling.
S

SunView 深度解读

该研究揭示辐照计积灰导致PR评估偏差30-43%,对阳光电源iSolarCloud智能运维平台具有重要价值。建议将辐照计3-4天清洁周期及早晚温度校正PR算法集成到预测性维护模块中,优化SG系列逆变器的性能监测精度。结合本地积灰率数据库,可为全球103个站点提供差异化运维策略,减少因监测误差导致的发电量损失,提升电站资产管理效益,强化阳光电源全生命周期解决方案竞争力。