← 返回
光伏发电技术
★ 5.0
GaInAsSb异质结纳米柱阵列光电阴极对电场的响应机制
The response mechanism of GaInAsSb heterojunction nanopillar array photocathode to electric field
语言:
中文摘要
摘要 基于GaSb的纳米柱阵列光电阴极因其高量子效率、低暗电流和宽响应波段,在太阳能及热光伏系统领域得到了广泛应用。然而,横向光生电流收集困难的问题制约了其实际应用。本研究建立了两种模型——恒定高亚层和内建电场模型,系统阐明了内建电场(E_in)影响异质结构纳米柱光发射行为的作用机制。结果表明,E_in2促进异质结纳米柱的顶部发射,而E_in1主导横向发射。外加电场增强了横向发射电子的收集效率,从而提高了阴极的净效率。具体而言,在电场强度为1.5 V/μm时,GaInAsSb纳米柱阵列(NPAs)的净效率超过11%,是无外加电场情况下的1.75倍。该电场效应可提升纳米柱阵列阴极的光电性能,且适用于所有形状的纳米柱结构。本研究通过理论计算解释了电场对纳米柱阵列性能的影响,为高性能锑化物基纳米柱阵列光电阴极的后续研究与应用提供了理论指导。
English Abstract
Abstract GaSb-based nanopillar arrays photocathodes are widely used in the field of solar energy and thermal photovoltaic systems due to their high quantum efficiency, low dark current and wide response band. However, difficulties in collecting lateral photocurrents have hindered their application. This study established two models—constant high sublayer and internal electric fields—the study elucidated the mechanisms by which E in affect the photoemission behavior of heterostructure nanopillars. Results showed that the E in2 promotes top emission from heterojunction nanopillars, while the E in1 governs lateral emission. External electric fields enhanced the collection of laterally emitted electrons, leading to an increase in the net efficiency of the cathode. Specifically, at a field strength of 1.5 V/μm, the net efficiency of GaInAsSb NPAs exceeded 11 %, which was 1.75 times higher than that without electric field. This electric field enhances the photoelectric properties of the cathode of the nanopillar array, which is applicable to all shapes of nanopillar structures. This study uses theoretical calculations to explain the influence of electric fields on the performance of NPAs, which provides guidance for the future research and application of high-performance antimonide based NPA photocathodes.
S
SunView 深度解读
该GaInAsSb异质结纳米柱阵列光电阴极技术对阳光电源光伏逆变器产品具有重要启示价值。研究揭示的电场调控光电发射机制,特别是1.5V/μm电场强度下净效率提升75%的发现,可为SG系列逆变器的MPPT优化算法提供理论指导。其宽光谱响应、低暗电流特性与公司1500V高压系统的弱光发电优化方向高度契合。电场增强横向电子收集的机理可启发功率器件中SiC/GaN载流子输运优化设计,提升PowerTitan储能系统PCS的转换效率。该基础研究为新型高效光电转换材料在光伏及储能领域的应用探索提供了重要参考。