← 返回
光伏发电技术 ★ 5.0

红外热成像模糊对无人机检测太阳能电站效率的影响

Impacts of infrared thermographic image blurring on UAV inspection efficiency of solar power plants

语言:

中文摘要

摘要 采用配备红外(IR)相机的无人驾驶航空器(UAV)检测太阳能光伏(PV)电站,是一种识别发热热点及其他缺陷的成熟方法。对于大型光伏电站而言,若设备配置或规划不足,完成整个区域的检测任务将极具挑战性。由于每幅图像包含大量信息,图像质量直接决定了检测结果是否有效。在先前的研究中,已对无人机导航系统参数的不确定性进行了分析,结果表明其会严重降低图像质量并影响检测效率。然而,本研究进一步扩展了分析范围,纳入了因无人机飞行速度过快而导致的图像模糊(称为运动模糊)的影响,这种模糊会掩盖视频图像中的关键细节。新颖的分析表明,运动模糊应被视为限制数据质量和数据采集效率的关键因素。因此,本文提出了一种综合性的光伏检测仿真器,用于分析运动模糊与无人机导航性能相结合对整体系统性能的影响。该仿真器被用于评估两种导航精度水平、三种相机配置在三个不同纬度光伏电站条件下的表现。为避免红外图像中出现不可接受的运动模糊,针对所有情况确定了无人机的最大飞行速度,进而计算出整个系统的最大数据采集速率。仿真结果表明,用于光伏电站检测的无人机系统设计应包含一个经过精心选择的平台,以平衡导航性能与图像分辨率。图像分辨率直接影响由运动模糊所决定的无人机最大飞行速度,从而制约检测时间与数据采集速率。

English Abstract

Abstract Unmanned aerial vehicles (UAVs) inspecting solar photovoltaic (PV) power plants with infrared (IR) cameras is a well-established method to identify hotspots and other defects that radiate heat. With large PV power plants, the task of inspecting the entire area can be overwhelming if the equipment and planning are inadequate. With so much information in each image, the quality of the images will determine if the inspection is useful or not. In previous work, the uncertainty in UAV navigation system parameters has been analyzed and shown to seriously deteriorate image quality and affect inspection efficiency. However, in this study, the analysis is extended to include the effect of image blurring (called motion blur), resulting from the UAV travelling too fast, obscuring vital details in the video image. The novel analysis shows that motion blur is to be regarded as a key factor limiting data quality and data acquisition efficiency. Thus, a comprehensive PV inspection simulator that analyzes the effect of motion blur combined with the UAV navigation performance, is proposed to assess the complete system performance. The simulator is used to evaluate two levels of navigation precision and three camera setups at three different power plant latitudes. To avoid unacceptable motion blurring in the IR images, the maximum UAV flight velocity is determined for all cases. Subsequently, the maximum data acquisition rate of the overall system is calculated. The simulation results show that the design of a UAV system for PV power plant inspection should include a carefully chosen platform that balances navigation performance and image resolution. The image resolution directly affects the maximum flight velocity of the UAV, caused by motion blurring, thus constraining the inspection time and data acquisition rate.
S

SunView 深度解读

该研究对阳光电源智能运维体系具有重要价值。无人机红外巡检中的运动模糊问题直接影响光伏电站缺陷识别效率,这为iSolarCloud平台的智能巡检模块提供优化方向:可结合飞行速度与图像质量的平衡算法,制定最优巡检路径规划;针对SG系列逆变器管理的大型电站,通过预设不同纬度、不同相机配置的飞行参数库,提升热斑检测准确率;该技术可与阳光电源预测性维护系统协同,通过高质量红外数据训练AI模型,实现组件异常的早期预警,降低电站运维成本,提升发电效率。