← 返回
光伏发电技术
★ 5.0
光伏系统热管理:冷却策略的全面综述
Thermal management of photovoltaic systems: a comprehensive review of cooling strategies
| 作者 | Muhammad Sohaib Tahir · Xue Donga · Muhammad Mansoor Khanc · Ijaz Ur Rehman |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 299 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏系统 太阳能电池 发电性能 工作温度 太阳能辐射 |
语言:
中文摘要
摘要 与其他可再生能源相比,光伏系统是一种将太阳辐射转化为电能的有效方式。太阳能电池的性能受多种因素影响,包括太阳能电池材料、太阳辐射强度以及运行条件(环境温度、灰尘、湿度和遮挡)。其中,太阳能电池的高温工作状态是直接影响光伏发电性能和光伏系统使用寿命的最重要因素。通过采用不同的冷却技术,如主动冷却、被动冷却和混合冷却,可以提高光伏系统的发电效率。本文对平板式光伏系统的各种冷却方法进行了全面分析,将其与其他技术进行比较,并讨论了每种方法所面临的挑战、局限性、效率表现及发电输出。光伏组件可通过主动水冷技术(如喷水、水流冷却或纳米流体)提升效率,这些方法能够调节太阳能电池的温度,使效率最高提升15%–20%。主动风冷技术可使效率最高提升2.10%,而水冷技术则可使效率提高13%–18%。光伏组件也可受益于被动冷却技术,例如自然空气通风、水分蒸发和相变材料(PCM),这些方法可使电效率最高提升16.5%,相比之下,采用空气或水冷方法的平均电效率提升为12%–14%。混合型光伏系统结合了主动与被动冷却技术,实现高效的电力与热能联合输出,其电效率最高可提升19.4%。
English Abstract
Abstract The photovoltaic system is an effective way to convert solar irradiation into electricity in comparison to other renewable energy sources. The solar cell performance can be changed by several factors, including solar cell material, solar radiation, and operating conditions (ambient temperature, dust, humidity, and shading). A high working temperature of solar cells is the most important variable that directly degrades the performance of power generation and the life span of a photovoltaic system. The efficiency of power generation for the photovoltaic system can be enhanced by implementing different cooling techniques which include active cooling, passive cooling, and hybrid cooling. This paper presents a comprehensive analysis of various cooling methods for flat plate PV systems, comparing them with alternative techniques and discussing each method’s challenges, limitations, efficiencies, and power generation outputs. PV panels can enhance efficiency through active water-cooling techniques such as water-spraying, water-flowing, or nanofluids. These methods regulate the temperature of solar cells, boosting efficiency by up to 15–20%. Active air-cooling can improve efficiency by up to 2.10%, whereas water-cooling can increase efficiency by 13–18%. PV panels can also benefit from passive cooling techniques like natural air ventilation, water evaporation, and PCM, which can raise electrical efficiency by up to 16.5%, compared to the 12%–14% average efficiency achieved with air or water-cooling methods. Hybrid PV systems employ both active and passive cooling techniques for effective electrical and heat generation, increasing efficiency by up to 19.4%.
S
SunView 深度解读
该光伏热管理综合研究对阳光电源SG系列逆变器及系统集成方案具有重要参考价值。文章指出温度是影响光伏发电效率和寿命的关键因素,主动水冷可提升效率15-20%,混合冷却系统效率可达19.4%。这为阳光电源逆变器热设计优化、MPPT算法温度补偿策略、以及iSolarCloud平台的温度监测与预测性维护功能提供理论支撑。建议将热管理技术融入1500V高压系统设计,结合功率器件散热与组件冷却协同优化,提升系统整体发电效能和设备可靠性。