← 返回
光伏发电技术
★ 5.0
一种用于增强光伏热管理与能量收集的双功能冷却系统
A dual-functional cooling system for enhancing photovoltaic thermal management and energy harvesting
语言:
中文摘要
摘要 随着全球能源需求的持续增长以及光伏(PV)技术的快速发展,太阳能光伏发电已成为可再生能源的重要支柱。然而,随着光伏组件集成密度和输出功率的不断提高,热管理问题日益突出,导致光电转换效率下降和使用寿命缩短。为解决上述问题,本研究提出了一种集热管理与能量收集功能于一体的复合式光伏系统,采用水凝胶结构实现高效散热,并集成铝-空气电池以实现同步降温与发电。实验结果表明,在太阳辐照强度为1200 W·m⁻²的条件下,该集成系统有效降低了光伏面板表面温度达19.25 °C,最大冷却效率达到44.35%。同时,由光伏运行过程中产生的废热驱动的铝-空气电池实现了最高1.81 V的输出电压,表现出优异的能量转换性能。该多功能复合系统不仅显著提升了光伏组件的热管理水平,还实现了废热回收与协同发电,为多功能能源利用提供了新的技术路径。
English Abstract
Abstract With the continuous growth of global energy demand and the rapid advancement of photovoltaic (PV) technology, solar PV power generation has become a critical pillar of renewable energy. However, as the integration density and power output of PV modules continue to increase, thermal management challenges have become more pronounced, leading to reduced conversion efficiency and shortened service life. To address these issues, this study proposes a composite PV system that integrates thermal management and energy harvesting functionalities, employing hydrogel structures for efficient cooling and incorporating an aluminum-air battery to enable simultaneous cooling and electricity generation. Experimental results demonstrate that under a solar irradiance of 1200 W·m −2 , the integrated system effectively reduced the surface temperature of the PV panels by 19.25 °C, achieving a maximum cooling efficiency of 44.35 %. Meanwhile, the aluminum-air battery, driven by the waste heat generated during PV operation, achieved a maximum output voltage of 1.81 V, exhibiting excellent energy conversion performance. This multifunctional composite system not only significantly enhances the thermal management of PV modules but also realizes waste heat recovery and synergistic power generation, offering a novel pathway for multifunctional energy utilization.
S
SunView 深度解读
该光伏热管理与能量回收复合系统为阳光电源SG系列逆变器的热设计优化提供重要参考。研究显示通过水凝胶结构实现19.25°C降温,可显著提升组件转换效率,这与我司1500V高功率系统的散热需求高度契合。铝空气电池的废热发电思路可启发PowerTitan储能系统的热管理创新,将冷却能耗转化为辅助电源。建议将该多功能热管理技术应用于iSolarCloud平台的温度监测算法优化,通过预测性维护延长设备寿命,同时探索在大型地面电站中集成类似冷却-发电协同方案,提升系统综合能效。