← 返回
光伏发电技术 ★ 5.0

宽禁带溴化物钙钛矿太阳能电池中的高开路电压:空穴传输材料的作用

High open-circuit voltage in wide-bandgap bromide perovskite solar cells: the role of hole transport materials

作者 Mohammad Istiaque Hossain · Puvaneswaran Chelvanathan · Qingyang Liua · Brahim Aiss
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 299 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Fabricated FAPbBr3 solar cells using spiro-OMeTAD and fluorene-dithiophene HTMs.
语言:

中文摘要

摘要 我们报道了基于介孔TiO₂的宽禁带溴化物钙钛矿(FAPbBr₃)太阳能电池的制备与表征,该器件分别采用芴-二噻吩(fluorene-dithiophene,FDT)和spiro-OMeTAD作为空穴传输材料(HTMs)。器件的制备采用与光谱学研究样品相同的工艺流程,以确保材料沉积和界面质量的一致性。在标准一太阳光照条件下进行的电流-电压(I-V)测试显示出良好的光伏性能:使用spiro-OMeTAD的器件实现了6.7%的功率转换效率(PCE),其开路电压Voc为1.40 V,短路电流密度Jsc为6.80 mA/cm²,填充因子FF为70%;而基于芴-二噻吩的器件效率为6.3%,其中Voc为1.39 V,Jsc为6.60 mA/cm²,FF为68%。两种空穴传输材料均实现了极高的开路电压(约1.40 V),表明器件具有优异的界面质量,并显著抑制了非辐射复合损失。我们还利用X射线光电子能谱(XPS)和二次离子质谱(SIMS)对采用不同空穴传输材料的FAPbBr₃基太阳能电池的化学成分、元素分布及深度剖面进行了系统分析。XPS结果确认了Pb 4f、Br 3d和N 1s等特征峰的存在,验证了钙钛矿层的化学组成。SIMS分析显示溴离子(Br⁻)在钙钛矿层内分布均匀,表明材料稳定性良好,且未发生明显的卤素迁移现象。深度剖析进一步揭示了钙钛矿层、介孔TiO₂层以及各自空穴传输材料之间具有清晰明确的界面,各层间扩散极小,这一结果与I-V测试中观测到的高开路电压(约1.40 V)相一致。此外,我们还通过稳态和瞬态光电特性表征手段研究了器件的电荷提取行为与复合动力学。基于FDT的器件表现出优于spiro-OMeTAD器件的电荷注入性能和更高的开路电压。这些结果凸显了溴化物钙钛矿在高电压光伏应用中的巨大潜力,并强调了空穴传输材料的选择在优化器件性能中的关键作用。

English Abstract

Abstract We report the fabrication and characterization of mesoporous TiO 2 -based wide-bandgap bromide perovskite (FAPbBr 3 ) solar cells employing both fluorene-dithiophene and spiro-OMeTAD as hole transport materials (HTMs). The devices were fabricated using the same protocol as those investigated for spectroscopy, ensuring consistent material deposition and interface quality. Current-voltage (I-V) measurements under one sun illumination revealed promising photovoltaic performance, with power conversion efficiencies (PCE) of 6.7 % (Voc = 1.40 V, Jsc = 6.80 mA/cm 2 , FF = 70 %) for spiro-OMeTAD and 6.3 % (Voc = 1.39 V, Jsc = 6.60 mA/cm 2 , FF = 68 %) for fluorene-dithiophene-based devices. The exceptionally high open-circuit voltage (∼1.40 V) achieved by both HTMs highlights excellent interface quality and reduced non-radiative recombination losses. Both, X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were employed to investigate the chemical composition, elemental distribution, and depth profiling of the fabricated FAPbBr 3 -based solar cells with different hole transport materials (HTMs). XPS analysis confirmed the presence of characteristic Pb 4f, Br 3d, and N 1s peaks, verifying the composition of the perovskite layer. The SIMS results revealed a uniform distribution of bromide (Br − ) within the perovskite layer, confirming the stability of the material and the absence of significant halide migration. Depth profiling further demonstrated well-defined interfaces between the perovskite, mesoporous TiO 2 , and the respective HTMs, with minimal interdiffusion, which aligns with the high open-circuit voltage (∼1.40 V) observed in the I-V measurements. We have also studied the charge extraction behavior and recombination dynamics using steady-state and transient optoelectronic characterization tools. FDT-based devices confirm better charge injections and better Voc compared to Spiro-OMeTAD devices. These results underscore the potential of bromide-based perovskites for high-voltage photovoltaic applications and emphasize the critical role of HTM selection in optimizing device performance.
S

SunView 深度解读

该宽带隙溴化物钙钛矿电池技术实现1.40V超高开路电压,对阳光电源SG系列光伏逆变器的高压输入设计具有重要参考价值。其优异的界面质量控制和低非辐射复合损耗机制,可启发我们在1500V系统MPPT优化算法中针对高电压组件特性进行自适应调整。空穴传输材料选择对器件性能的关键影响,与我们功率器件中SiC/GaN材料界面工程优化思路相通,可为三电平拓扑中载流子注入效率提升提供材料学借鉴,助力提升逆变器转换效率和电压适配范围。