← 返回
储能系统技术 ★ 5.0

带扩展表面的窄通道流化床中床壁传热强化用于颗粒太阳能接收器

Enhanced bed–wall heat transfer in narrow-channel fluidized beds with extended surfaces for particle solar receivers

作者 Fuqiong Leia · Keaton J.Brewster · Winfred J.Arthur-Arhin · Katherine E.Schubert · Jesse R.Fosheim · Gregory S.Jackson
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 300 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Bubbling bed–wall effective heat transfer coefficients can exceed 2500 W m K with extended surfaces.
语言:

中文摘要

摘要 聚光太阳能发电(CSP)与高温热能存储(TES)相结合,为可调度的太阳能电力提供了有前景的解决方案,可在高于700°C的燃烧温度下实现高效率的热电厂运行。用于CSP的基于氧化物颗粒的高温TES需要一种能够在不超出接收器结构材料温度极限的前提下有效加热颗粒的接收器。具有封闭壁面的间接颗粒接收器得益于较高的壁面传热系数,从而减小了受辐照的接收器壁面与颗粒床层之间的温差。在光滑壁面的窄通道床层中,通过鼓泡颗粒流态化可实现较高的传热系数,使得具有倾斜腔体壁面的太阳能接收器能够承受超过200 kW·m⁻²的高法向太阳辐射通量,但床层与壁面之间的传热仍是关键的热阻环节。本研究探讨了在窄通道逆流流化床中引入扩展表面(U形翅片)以增强床壁传热系数的影响。实验结果表明,采用翅片壁面的鼓泡流化床在400°C条件下,对于平均粒径约为225 μm的颗粒,可实现超过2500 W·m⁻²·K⁻¹的有效床壁传热系数;对于平均粒径约为408 μm的较大颗粒,该系数仍可超过1500 W·m⁻²·K⁻¹。如此高的有效传热系数出现在相对较低的上升气体速度下,并且对向下的颗粒质量通量基本不敏感。这些数值相较于光滑壁面流化床提高了两倍以上。内部翅片壁面在增强床壁传热方面的有效性,为降低间接颗粒接收器的尺寸和材料成本提供了一条可行途径。

English Abstract

Abstract Concentrating solar power (CSP) coupled with high-temperature, thermal energy storage (TES) offers a promising solution for dispatchable solar electricity with high-efficiency thermal power plants at firing temperatures above 700 ° C . High-temperature TES with oxide particles for CSP requires a receiver that can effectively heat particles without exceeding temperature limits of receiver structural materials. Indirect particle receivers with confining walls benefit from high wall heat transfer coefficients that reduce the temperature difference between irradiated receiver walls and particle-bed temperatures. Bubbling particle fluidization in smooth-wall narrow channel beds can provide high heat transfer coefficients such that solar receivers with angled cavity walls can sustain high normal solar fluxes above 200 kW m −2 , but bed–wall heat transfer still remains the critical thermal resistance. This study investigates the impact of incorporating extended surfaces (U-shaped fins) in narrow-channel, counterflow fluidized beds to enhance the bed–wall heat transfer coefficient. Experimental results show that bubbling fluidized beds with fin walls can achieve effective bed–wall heat transfer coefficients over 2500 W m − 2 K − 1 at 400 ° C for particles with mean diameter ≈ 225 μ m and over 1500 W m − 2 K − 1 for larger particles with mean diameter ≈ 408 μ m. Such high effective heat transfer coefficients occur at relatively low upward gas velocities and are largely insensitive to the downward particle mass flux. These values represent more than a two-fold improvement compared to smooth-wall fluidized beds. The effectiveness of internal fin walls in enhancing bed–wall heat transfer offers a pathway to lower the size and material costs of indirect particle receivers.
S

SunView 深度解读

该窄通道流化床强化传热技术对阳光电源光储一体化系统具有重要参考价值。研究中700°C以上高温储能与CSP耦合的思路,可启发ST系列储能变流器在光热电站的应用拓展。2500 W/m²K的高传热系数突破了传统储热瓶颈,为PowerTitan等大型储能系统的热管理优化提供新思路。特别是其低气速、高效率特性,与阳光电源功率器件的SiC散热设计理念契合,可应用于PCS功率模块的热设计改进,降低系统成本并提升可靠性。