← 返回
光伏发电技术
★ 5.0
基于可分裂组织型P系统的光伏阵列故障分类方法
A fault classification method for photovoltaic arrays based on divisible tissue-like P systems
| 作者 | Quanlin Lenga · Tao Wanga · Defeng Linb |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 300 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | This paper designs an effective method for eliminating the influence of environmental factors. |
语言:
中文摘要
摘要 为了充分利用光伏阵列的输出特性以诊断其故障类型,本文提出了一种基于可分裂组织型P系统的光伏阵列故障分类方法。首先,建立光伏阵列的仿真模型,提取最大功率点处的电压和电流、P-V曲线中所有峰值点功率值之和以及填充因子作为特征量;随后将这些特征与构建的特征库进行比对,并在消除环境因素影响后,将其作为光伏阵列故障分类方法的输入。其次,提出一种改进的自适应密度的基于密度的空间聚类算法(DBSCAN)用于样本聚类。然后,根据聚类结果构建基于可分裂组织型P系统的故障分类模型,并执行推理算法。最后,依据推理算法输出的概率向量确定光伏阵列的故障类型。将所提方法与其他多种机器学习算法进行了对比实验,结果表明该方法具有最高的分类准确率,验证了所提方法的有效性。
English Abstract
Abstract To fully leverage the output characteristics of photovoltaic arrays for diagnosing photovoltaic array fault types, this paper introduces a photovoltaic array fault classification approach based on divisible tissue-like P systems. Firstly, a simulation model of the photovoltaic array is established, voltage and current at the maximum power voltage, sum of the power values at all peak points in P-V curves and the fill factor are extracted as features. These features are then compared against the constructed feature library, and the features are used as inputs of the photovoltaic array fault classification method after eliminating the influence of environmental factors. Secondly, an adaptive density based spatial clustering of applications with noise algorithm is proposed to cluster the samples. Then, the fault classification models based the divisible tissue-like P system are constructed on the basis of the clustering results, and a reasoning algorithm is executed. Finally, the fault types of photovoltaic arrays are determined based on the probability vectors yielded by the reasoning algorithm. A comparison was conducted between the proposed method and several other machine learning algorithms, the results demonstrated that the proposed method achieved the highest accuracy, which prove that the proposed method is effective.
S
SunView 深度解读
该光伏阵列故障分类方法对阳光电源SG系列逆变器及iSolarCloud智能运维平台具有重要应用价值。论文提出的基于P-V曲线特征提取(最大功率点电压电流、峰值功率和、填充因子)与自适应聚类算法,可直接集成到逆变器MPPT优化模块,实现故障实时诊断。该方法相比传统机器学习算法准确率更高,可增强iSolarCloud平台的预测性维护能力,通过特征库比对快速识别组串遮挡、热斑、开路等故障类型,降低电站运维成本,提升发电效率,为阳光电源智能化诊断技术提供创新思路。