← 返回
光伏发电技术 ★ 5.0

Ca掺杂HgS的DFT+U研究:面向高性能光伏应用的带隙调控与光学特性

DFT+U study of Ca doped HgS: Bandgap engineering and optical properties for high-performance photovoltaic application

作者 Yogesh Kumar Sahua · Shrivishal Tripathi · Punya Prasanna Paltani
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 300 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 DFT+U reveals Ca-doped HgS as a stable tunable absorber for solar applications.
语言:

中文摘要

摘要 本研究通过密度泛函理论(DFT)计算,系统探究了不同钙掺杂浓度下Ca掺杂HgS(Hg1−xCaxS)化合物在钙含量x从0到1(以0.25为间隔)范围内的功能特性。研究采用广义梯度近似结合Hubbard U修正(GGA+U)方法,并使用Perdew-Burke-Ernzerhof(PBE)泛函,以确保对电子结构的精确预测。引入Hubbard U修正可有效克服传统GGA方法对带隙低估的问题,从而提高电子结构计算的准确性。在HgS中引入钙元素为调控其电子和光学特性以满足高性能光电器件应用提供了有前景的途径。然而,目前关于不同浓度Ca掺杂的系统性影响仍缺乏深入研究。本工作系统分析了Ca取代对HgS半导体行为的影响,发现材料具有直接带隙特征,对应于布里渊区Gamma点(Γ−Γ),且随着Ca含量的增加,带隙逐渐增大。此外,该材料表现出优异的光学性能,包括高吸收系数、低反射率以及在可见光和紫外光谱范围内较低的能量损耗,这些特性对于光电和光伏器件中的高效光吸收至关重要。研究结果表明,Ca掺杂能够有效调控HgS的光电特性,为带隙工程提供了一条切实可行的技术路径。因此,本研究深入揭示了Hg1−xCaxS体系中结构与物性之间的关系,填补了对其功能行为理解上的关键空白,并为未来面向高性能太阳能应用的材料设计提供了重要指导。特别地,在Ca掺杂量x = 0.75时(即Hg0.25Ca0.75S),材料的带隙(Eg)和吸收系数(α)显著提升,其带隙达到约1.13 eV,与单结太阳能电池效率极限——Shockley-Queisser极限高度匹配,展现出最优的光伏应用潜力。

English Abstract

Abstract This research investigates the functional characteristics of Ca doped HgS (Hg 1 − x Ca x S) compounds across different calcium concentrations ( X= 0 to 1 in the difference of 0.25) using DFT (Density Functional Theory) calculations. The study employs the GGA + U (Generalized Gradient Approximation with U correction) methodology with the PBE (Perdew–Burke–Ernzerhof) functional to ensure accurate electronic structure predictions. The inclusion of Hubbard U corrections enhances the accuracy of electronic structure predictions by addressing the underestimation of the bandgap inherent in conventional GGA. Calcium incorporation in HgS provides a promising route to fine-tune its electronic and optical characteristics for high-performance optoelectronic applications. However, the systematic impact of Ca doping across various concentrations remains largely unexplored. This work investigates the influence of Ca substitution on the semiconductor behavior of HgS, revealing a direct bandgap corresponding to Gamma point ( Γ − Γ ), which rises with rising Ca content. In addition, the material exhibits promising optical properties, such as high absorption coefficients, low reflectivity, and reduced energy loss across the visible and ultraviolet spectral ranges characteristics that are crucial for efficient light harvesting in optoelectronic and photovoltaic devices. These results demonstrate that Ca doping effectively tunes the optoelectronic behavior of HgS, offering a practical pathway for bandgap engineering. Consequently, the study provides valuable insights into the structure property relationship in Hg 1 − x Ca x S, addressing critical gaps in the understanding of its functional behavior and guiding future material design for high-performance solar energy applications. The incorporation of Ca into Hg 1 − x Ca x S (where x = 0 . 75 ) significantly enhances the band gap ( E g ) and absorption coefficient ( α ), with Hg 0.25 Ca 0.75 S exhibiting an optimal E g of ∼ 1.13 eV closely aligning with the Shockley–Queisser limit for maximum single-junction solar cell efficiency.
S

SunView 深度解读

该Ca掺杂HgS带隙工程研究对阳光电源SG系列光伏逆变器具有重要启示价值。研究通过钙掺杂将HgS带隙优化至1.13eV,接近Shockley-Queisser极限,显著提升光伏转换效率。其高吸收系数、低反射率特性可指导阳光电源开发新一代高效光伏组件匹配方案,优化MPPT算法以适配新型半导体材料的I-V特性曲线。该材料在紫外-可见光谱的宽吸收特性,为1500V高压系统和三电平拓扑逆变器的效率提升提供材料科学依据,助力iSolarCloud平台建立新材料光伏电站的智能运维模型。