← 返回
光伏发电技术
★ 5.0
背接触界面复合对CZT(S,Se)薄膜太阳能电池效率的影响:一种理论视角
Impact of back-contact interface recombination on CZT(S,Se) thin-film solar cell efficiency: A theoretical perspective
语言:
中文摘要
摘要:由于吸收层与金属背接触之间界面处的载流子损失所导致的效率退化,仍然是CZT(S,Se)薄膜光伏器件面临的主要限制因素——这是一种环境友好且地球储量丰富的黄铜矿型材料体系。本研究提出了一种理论框架,结合实验趋势与基于TCAD的数值模拟,系统地分析并缓解此类界面诱导的损耗。该模型引入了若干关键的界面物理现象,包括能带排列和非对称复合动力学,且无需依赖复杂的制备工艺。仿真结果表明,通过有针对性的界面优化——特别是利用势垒调控和钝化技术——可以显著降低非辐射复合并改善载流子收集效率。模型预测,优化背界面可使功率转换效率从12.6%提升至超过17.0%,主要归因于开路电压(VOC)和填充因子的提高。本工作引入了一种新颖的、具有预测能力的理论框架,可用于指导黄铜矿型太阳能电池中的靶向界面工程,并为下一代高效、低成本太阳能技术的实验设计提供了有价值的工具。
English Abstract
Abstract Efficiency degradation resulting from interfacial carrier losses at the junction between the absorber layer and metallic back contact remains a major limitation for CZT(S,Se) thin-film photovoltaic devices—an environmentally friendly, earth-abundant kesterite material system. This study presents a theoretical framework that integrates both experimental trends and TCAD-based numerical simulations to examine and mitigate such interface-induced losses. The model incorporates critical interfacial phenomena, including band alignment and asymmetric recombination kinetics, without requiring high fabrication complexity. Simulation results demonstrate that targeted interface optimization—especially via barrier modulation and passivation techniques—can significantly reduce nonradiative recombination and improve carrier collection. The model predicts that optimizing the back interface can raise the power conversion efficiency from 12.6 % to > 17.0 %, mainly by enhancing the open-circuit voltage (V OC ) and fill factor. This work introduces a novel, predictive framework that enables targeted interface engineering in kesterite solar cells and provides a valuable tool to guide next-generation experimental designs for high-efficiency, low-cost solar energy technologies.
S
SunView 深度解读
该CZT(S,Se)薄膜电池背接触界面优化研究对阳光电源SG系列光伏逆变器系统具有重要参考价值。研究揭示的界面钝化技术可提升组件效率至17%以上,直接影响逆变器MPPT算法优化策略和系统发电量。背接触复合损耗机理分析为阳光电源开发新一代高效组件适配型逆变器提供理论依据,特别是在1500V高压系统中,组件效率提升可降低系统BOS成本。该研究的TCAD仿真方法论可应用于阳光电源功率器件SiC/GaN界面优化,提升逆变器转换效率和可靠性。