← 返回
光伏发电技术 ★ 5.0

采用石墨烯纳米颗粒、纳米氧化锌和细菌纤维素增强的EVA用于改善光伏封装

EVA reinforced with graphene nanoparticles, nano zinc oxide and bacterial cellulose for improved photovoltaic encapsulation

作者 Mansoor Shafiq Durran · Syed Nadir Hussai · Hafiz Muhammad Anwar Asgha · Bilal Haide
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Hybrid fillers greatly enhance EVA strength and thermal stability.
语言:

中文摘要

摘要 本研究探索了一种通过引入石墨烯纳米片(GNP)、纳米氧化锌(n-ZnO)和细菌纤维素(BC)三元复合填料体系来改进广泛应用于太阳能电池板封装材料乙烯-醋酸乙烯酯共聚物(EVA)的新方法。尽管以往的研究已对单组分或双组分填料改性EVA进行了探讨,但本工作首次采用这种特定的三元纳米填料系统以提升EVA在光伏(PV)应用中的综合性能。所制备的复合材料(EVA1–EVA3)通过傅里叶变换红外光谱(FTIR)、热重分析(TGA)、差示扫描量热法(DSC)、扫描电子显微镜(SEM)、紫外-可见光谱(UV–Vis)以及力学性能测试等多种技术手段进行了表征。结果表明,EVA3配方表现出最优的整体性能:其拉伸强度提高了32.6%,从18.7 ± 0.4 MPa提升至24.8 ± 0.7 MPa;水蒸气透过率(WVTR)下降超过70%,显示出显著增强的防潮能力;热分解温度由300.2 °C升高至340.3 °C,玻璃化转变温度也有所提高,表明材料在高温下的稳定性更佳;光学测试显示EVA3在可见光区具有较高的透光率(在600 nm处达82.5%),同时能有效阻隔波长低于400 nm的紫外辐射,这两项特性对于太阳能利用至关重要。光谱分析证实了EVA基体与各填料之间存在强烈的相互作用,统计学检验(ANOVA、F检验)进一步验证了上述性能提升具有显著的科学意义(p < 0.01)。综上所述,合理配比的GNP、n-ZnO与BC协同作用可显著提升EVA薄膜的耐久性、热稳定性和光电效率,使得EVA3成为下一代太阳能电池板封装材料的有力候选者。

English Abstract

Abstract This study explores a new way to improve ethylene–vinyl acetate (EVA), a widely used material in solar panel encapsulation, by reinforcing it with a combination of graphene nanoplatelets (GNP), nano-zinc oxide (n-ZnO), and bacterial cellulose (BC). While previous research has studied EVA with single or two-component fillers, this work is the first to use this specific three-part (ternary) nanofiller system to enhance the performance of EVA for photovoltaic (PV) applications. The developed composites (EVA1–EVA3) were tested using a range of techniques, including FTIR, TGA, DSC, SEM, UV–Vis, and mechanical testing. Among the samples, the EVA3 formulation showed the best overall performance. Its tensile strength improved by 32.6 %, rising from 18.7 ± 0.4 MPa to 24.8 ± 0.7 MPa, while the water vapor transmission rate (WVTR) dropped by over 70 %, indicating much better moisture resistance. The thermal degradation temperature increased from 300.2 °C to 340.3 °C, and the glass transition temperature also improved, suggesting better stability under heat. Optical testing showed EVA3 maintained high visible light transmittance (82.5 % at 600 nm) and blocked UV radiation below 400 nm—both important features for solar energy use. Spectroscopic analysis confirmed strong interactions between EVA and the fillers, and statistical tests (ANOVA, F-test) verified that the improvements were scientifically meaningful (p < 0.01). Together, these results show that using a carefully balanced combination of GNP, n-ZnO, and BC can significantly improve the durability, stability, and efficiency of EVA films. This makes EVA3 a strong candidate for next-generation solar panel encapsulation materials.
S

SunView 深度解读

该EVA封装材料改进技术对阳光电源SG系列光伏逆变器配套组件具有重要应用价值。三元纳米填料体系使封装材料拉伸强度提升32.6%、水汽透过率降低70%、热降解温度提高至340.3°C,可显著延长组件使用寿命,降低PID效应风险。高透光率(82.5%)与UV阻隔特性可提升发电效率并保护背板,契合阳光电源1500V高压系统对封装材料耐久性的严苛要求。该技术可为iSolarCloud平台的组件健康预测模型提供材料退化新参数,优化电站全生命周期运维策略。