← 返回
光伏发电技术 ★ 5.0

城市光伏系统重塑城市的辐射-对流通量及制冷能耗

Urban photovoltaics reshape radiative–convective fluxes and cooling energy demand in cities

作者 Hamza Nisar · Mattheos Santamouris · Christophe Menezo · Ansar Khanc
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Rooftop photovoltaic solar panels increase daytime temperatures by 0.72 °C and cool nights by 0.42 °C.
语言:

中文摘要

摘要 快速的城市化进程以及向可再生能源的转型正推动屋顶光伏太阳能板(RPVSPs)在城市中的广泛应用,以满足本地能源需求。尽管其在清洁能源发电方面的潜力已被广泛认可,但它们对城市微气候、建筑能耗以及系统性能的更广泛影响仍缺乏充分理解。本研究利用高分辨率的天气研究与预报(WRF)模型模拟,探讨了在法国里昂市大规模部署RPVSPs对城市温度、能量平衡和制冷需求的影响。结果表明,全市范围安装RPVSPs可使白天温度升高最多达0.72 °C,主要原因在于RPVSPs相较于传统屋顶表面具有较低的反照率,导致太阳热量吸收增加,并增强了光伏板与下方屋顶之间的热对流过程,从而提高了白天向城市大气输送的净感热通量。相反,在夜间则观测到最高达−0.42 °C的降温效应,这是由于光伏板覆盖屋顶存在空气间隙且热储存能力降低,促进了辐射散热,使得日落后地表能够更有效地冷却。这种昼夜双重热行为反映了RPVSPs对城市地表辐射和对流通量的共同调节作用。虽然这些效应可能尚未超过专用反射材料或辐射冷却材料的降温能力,但本研究的创新之处在于量化了现实世界中RPVSPs在城市尺度部署后的综合热影响。这一维度在现有文献中对于温带城市而言仍严重不足,尤其是在平衡能源生产与局部微气候改变方面。此外,RPVSPs能有效降低屋顶表面温度,使白天空调(AC)能耗需求减少近5%,在屋顶面积占比较高的区域尤为显著。当RPVSPs覆盖率为25%时,即时利用率达到100%,可抵消26.8%的空调能耗需求;在60%覆盖率下,即时利用率下降至91.2%,实现59.9%的空调负荷抵消,而配备储能系统后可恢复至100%利用率,并实现50.1%的负荷抵消;在100%全覆盖情况下,即时利用率进一步降至64.3%,但可抵消73.0%的空调需求,若配置储能,则可重新实现100%的利用率,并达成85.9%的空调负荷抵消。高分辨率模拟揭示,RPVSPs同时改变了城市的辐射-对流通量和制冷能耗,凸显其在塑造城市气候与提升能源韧性方面的双重角色。此类策略对于构建可持续、高效节能的城市环境至关重要,能够在优化可再生能源利用的同时保障居民的热舒适性与城市系统的气候适应能力。

English Abstract

Abstract The rapid urbanization and transition to renewable energy are driving the adoption of rooftop photovoltaic solar panels (RPVSPs) to meet local energy demands. While their potential for clean energy generation is well-recognized, their broader impacts on urban microclimates, building energy consumption, and system performance remain poorly understood. This study examines the effects of RPVSPs on urban temperatures, energy balances, and cooling demand in Lyon, France, using high-resolution simulations with the weather research and forecasting (WRF) model. Results show that citywide installation of RPVSPs increase daytime temperatures by up to 0.72 °C, primarily because RPVSPs have a lower albedo compared to conventional rooftop surfaces, which leads to increased solar heat absorption and enhanced thermal convection between the panels and the underlying roof surfaces. This elevates the net sensible heat flux to the urban atmosphere during the daytime. Conversely, the nocturnal cooling of up to −0.42 °C results from radiative heat losses facilitated by the air gap and reduced thermal storage in RPVSPs covered roofs, enabling more efficient surface cooling after sunset. This dual thermal behavior reflects the RPVSPs influence on altering both the radiative and convective energy fluxes at the urban surface. While these effects may not exceed the cooling capacity of dedicated reflective or radiative cooling materials, the innovation in our study lies in quantifying the net thermal impact of real-world RPVSPs deployment at an urban scale. This dimension remains inadequately addressed in existing literature for temperate cities, especially in terms of balancing energy production with local microclimatic alterations. Additionally, RPVSPs reduce roof surface temperatures, cutting daytime air conditioning (AC) demand by nearly 5 %, particularly in areas with high roof-to-surface ratios. Immediate RPVSPs utilization achieved 100 % at 25 % RPVSPs coverage, offsetting 26.8 % of AC demand. At 60 % RPVSPs coverage, utilization dropped to 91.2 % with a 59.9 % AC offset, but storage enabled 100 % utilization and a 50.1 % offset. At full (100 % RPVSPs) coverage, immediate utilization declined to 64.3 % with a 73.0 % AC offset, while storage restored 100 % utilization, achieving an 85.9 % AC offset. High-resolution simulations reveal that RPVSPs simultaneously alter urban radiative–convective fluxes and cooling energy demand, highlighting their dual role in shaping city climate and energy resilience. Such strategies are vital for creating sustainable, energy-efficient urban environments that optimize renewable energy use while ensuring thermal comfort and resilience.
S

SunView 深度解读

该研究揭示城市屋顶光伏对微气候和建筑能耗的双重影响,对阳光电源储能系统具有重要应用价值。研究表明60%光伏覆盖率下,配储可实现100%利用率和50.1%空调负荷抵消,验证了ST系列储能变流器与PowerTitan系统在城市场景的必要性。白天光伏降温减少5%空调需求,夜间辐射散热特性为储能系统提供更优运行环境。建议结合iSolarCloud平台开发城市微气候-储能协同优化算法,根据温度波动动态调节充放电策略,提升光储系统在高密度城市的综合效益和电网韧性。