← 返回
光伏发电技术 ★ 5.0

光伏温室的多目标优化建模与实地验证

Multi-objective optimization of photovoltaic greenhouses with modelling and field validation

作者 Anuradha Tomar
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A PVGH model optimizes solar energy use irrigation yield and revenue.
语言:

中文摘要

摘要 光伏温室(PVGHs)为粮食和能源生产提供了一种可持续的解决方案,尤其适用于无电网覆盖且水资源匮乏的地区。然而,其运行优化需要在发电效率、灌溉效率、作物品质和经济可行性等多个相互竞争的目标之间进行权衡管理。本研究提出了一种基于第一性原理并经过实地验证的多目标优化框架,专为光伏温室量身定制。该模型同时最大化四个目标:(i)光伏发电效率,(ii)基于水分利用效率的作物产量,(iii)综合果实品质,以及(iv)经济回报。与以往研究不同,该框架将一个动态品质指数——整合了糖度(°Brix)、硬度、酸度和果实大小——纳入优化过程,并将实时成本–收益分析嵌入控制逻辑中。实验验证在一个半干旱、离网型光伏温室内进行,覆盖97天的番茄种植周期。模型在产量、用水量、发电量和品质等关键性能指标上均表现出良好的预测准确性(R² > 0.92;偏差 < 7%)。通过敏感性分析和基于情景的分析,验证了系统在环境变化和资源约束条件下的鲁棒性。该框架可实现为低成本数字孪生系统,支持具备品质感知能力的自适应温室控制,在气候敏感、资源受限的农业环境中具有广泛的应用潜力。此外,该研究有助于提升脆弱农村地区的食物–能源–水安全,并推动可持续发展。

English Abstract

Abstract Photovoltaic greenhouses (PVGHs) offer a sustainable solution for food and energy production, particularly in off-grid and water-scarce regions. However, optimizing their operation requires managing competing objectives across energy generation, irrigation efficiency, crop quality, and economic viability. This study presents a field-validated, first-principles-based multi-objective optimization framework tailored for PVGHs. The model concurrently maximizes four objectives: (i) photovoltaic energy efficiency, (ii) water-use-informed crop yield, (iii) composite fruit quality, and (iv) economic return. Unlike prior work, the framework integrates a dynamic quality index—combining °Brix, firmness, acidity, and size—into the optimization process and embeds real-time cost–revenue analysis into control logic. Empirical validation is conducted over a 97-day tomato crop cycle in a semi-arid, off-grid PVGH. The model achieves strong predictive agreement across key performance indicators (R 2 > 0.92; deviation < 7 %) for yield, water use, energy generation, and quality. Sensitivity and scenario-based analysis demonstrate system robustness under environmental and resource constraints. Implemented as a low-cost digital twin, the framework supports adaptive, quality-aware greenhouse control and holds strong potential for deployment in climate-sensitive, resource-limited agriculture. It also contributes to food-energy-water security and sustainable development in vulnerable rural regions.
S

SunView 深度解读

该光伏温室多目标优化技术对阳光电源SG系列光伏逆变器及智能运维平台具有重要应用价值。研究中的动态MPPT优化与能量-作物-水资源协同控制理念,可融入iSolarCloud平台实现农光互补场景的精细化管理。其实时成本收益分析逻辑可启发SG逆变器在离网农业场景中的自适应控制策略开发,结合ST储能系统可构建完整的食物-能源-水安全解决方案,特别适用于干旱缺水地区的分布式光伏应用,为公司拓展农业光伏与乡村能源市场提供技术参考。