← 返回
光伏发电技术 ★ 5.0

太阳能光伏板材料生命周期与可持续性的综合综述

Comprehensive review of the material life cycle and sustainability of solar photovoltaic panels

作者 Arefin Ittesafun Abian · Sami Azamb · David Ompong · Deepika Mathur
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Reviews solar panel manufacturing energy matrices and sustainability aspects.
语言:

中文摘要

摘要 光伏(PV)系统因其低碳排放和可再生特性,为化石燃料提供了可持续的替代方案。本综述遵循系统性综述与荟萃分析报告条目(PRISMA)方法,提出了五个研究问题(RQs),旨在识别太阳能光伏技术中可持续的原材料开采与提纯方法。研究目标包括:确定在不同代际光伏系统中,在能耗、能量回收期(EPBT)和全球变暖潜势(GWP/CO₂排放)方面表现最优的系统,以及户外应用中最高效的光伏系统。RQ1提出了符合生命周期评估原则及联合国可持续发展目标12(SDG 12)的环境友好型原材料提取与精炼技术,例如甘氨酸浸出法和离子液体法。RQ2指出,单晶硅(SC-Si)(19至48 GJ/kW)、砷化镓(GaAs)(10至20 GJ/kW)和聚光光伏(CPV)(4.3至13 GJ/kW)具有最高的能源需求。RQ3发现,单晶硅(1–4年)、铜铟硒(1.87–9.44年)和有机光伏电池(0.2–4年)的能量回收期最长。RQ4识别出单晶硅(40至60 g CO₂-eq/kWh)、砷化镓(40至70 g CO₂-eq/kWh)和钙钛矿太阳能电池(20至60 g CO₂-eq/kWh)具有最高的全球变暖潜势。RQ5显示,聚光光伏(CPV)技术在户外应用中的效率最高,达到33%。经过全面回顾,本文提出了未来的研究方向,包括列出可回收、可再利用和应淘汰的材料清单以提升光伏系统的可持续性,评估更多生命周期阶段的能耗,并开发延长组件寿命、减少更换频率和最小化废弃物的方法。

English Abstract

Abstract Photovoltaic (PV) systems provide a sustainable alternative to fossil fuels due to their low carbon emissions and renewability. This survey followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methods and proposed five research questions (RQs) to identify sustainable raw material extraction and refinement methods in solar PV technologies. It aimed to determine the best-performing PV systems regarding energy consumption, energy payback time (EPBT), and global warming potential (GWP/CO 2 emissions) across generations, as well as the most efficient PV systems for outdoor use. RQ1 presented environmentally friendly raw material extraction and refinement techniques, such as glycine leaching and ionic liquids, in line with Life Cycle Assessment principles and Sustainable Development Goal 12. RQ2 indicated that single-crystalline silicon (SC-Si) (19 to 48 GJ/kW), gallium arsenide (GaAs) (10 to 20 GJ/kW), and concentrated photovoltaics (CPV) (4.3 to 13 GJ/kW) had the highest energy demands. RQ3 found that SC-Si (1–4 years), copper indium selenide (1.87–9.44 years), and organic PV cells (0.2–4 years) had the longest EPBTs. RQ4 identified the highest GWP in SC-Si (40 to 60 g CO 2 -eq/kWh), GaAs (40 to 70 g CO 2 -eq/kWh), and perovskite solar cells (20 to 60 g CO 2 -eq/kWh). RQ5 showed that CPV technology had the highest outdoor efficiency at 33 %. After a thorough review, we proposed future research directions, including a list of recyclables, reusable, and disposable materials to enhance PV sustainability, evaluating energy consumption across additional life cycle stages, and developing methods to extend panel lifespan, reduce replacements, and minimize waste.
S

SunView 深度解读

该综合生命周期研究为阳光电源光伏逆变器产品线提供重要参考。研究指出单晶硅组件能量回收期1-4年、碳排放40-60g CO2-eq/kWh,验证了SG系列逆变器配套单晶硅系统的可持续性优势。CPV技术33%户外效率最高,启发我们在1500V系统和MPPT优化算法中进一步提升转换效率。文章强调的可回收材料清单和延长面板寿命方向,与iSolarCloud平台预测性维护功能高度契合,可通过智能运维降低更换频率,减少全生命周期碳足迹,助力SDG12可持续目标实现。