← 返回
光伏发电技术
★ 5.0
多尺度太阳能制氢系统设计:一个开源建模框架
Multi-scale solar-to-hydrogen system design: An open-source modeling framework
| 作者 | Cristina Teixeir · Miguel Alexandre · Leonardo Rodriguesbc · António T.Vicente · Ana S.Reis-Machadoa · Cristina B.Correia · Cristiano P.Ramos · Adélio Mendes · Rodrigo Martins · Manuel J.Mendes |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 301 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Python model simulates the H2 production in a grid-connected PV-electrolyzer system. |
语言:
中文摘要
摘要 由可再生能源生产的氢气在实现净正向目标方面具有提供可持续解决方案的巨大潜力。然而,阻碍其广泛采用的一个技术挑战是缺乏用于在真实条件下对集成系统组件进行精确尺寸设计和仿真模拟的开源建模工具。在本研究中,我们开发了一个可扩展、用户友好且开源的Python®模型,用于模拟并网型电池辅助的光伏-电解槽系统,以实现绿色氢气的生产及其向高附加值化学品和燃料的转化。该代码已在GitHub上公开发布,使用户能够预测不同规模和地理位置下太阳能制氢系统的性能。该模型应用于三个具有不同气候特征的地点——辛特拉(葡萄牙)、埃德蒙顿(加拿大)和水晶溪(澳大利亚),采用了商用光伏和电解槽系统,并结合来自不同气象数据库的实测数据。结果表明,辛特拉是生产力最高的选址,其年光伏发电量比埃德蒙顿高出39%,比水晶溪高出9%。当考虑仅由光伏电站供电、电解槽负载容量为0.5 W_EC/W_p_PV的情形时,辛特拉的太阳能制氢系统可实现每年27克氢气/瓦峰值光伏(g/W_p_PV)的绿色氢气产量,并向电网输出283瓦时/瓦峰值光伏(Wh/W_p_PV)的过剩电能。若实现电解槽持续24/7运行,则年氢气产量可提升至33 g/W_p_PV,同时氢气平准化成本降低至6.42欧元/千克氢气(€6.42/kg H₂)。总体而言,本研究旨在推动绿色氢气生产的规模化发展,促进更加可持续的全球经济体系。
English Abstract
Abstract Hydrogen produced from renewable energy holds significant potential in providing sustainable solutions to achieve Net-Positive goals. However, one technical challenge hindering its widespread adoption is the absence of open-source precise modeling tools for sizing and simulating integrated system components under real-world conditions. In this work, we developed an adaptable, user-friendly and open-source Python® model that simulates grid-connected battery-assisted photovoltaic-electrolyzer systems for green hydrogen production and conversion into high-value chemicals and fuels. The code is publicly available on GitHub, enabling users to predict solar hydrogen system performance across various sizes and locations. The model was applied to three locations with distinct climatic patterns – Sines (Portugal), Edmonton (Canada), and Crystal Brook (Australia) – using commercial photovoltaic and electrolyzer systems, and empirical data from different meteorological databases. Sines emerged as the most productive site, with an annual photovoltaic energy yield 39 % higher than Edmonton and 9 % higher than Crystal Brook. When considering an electrolyzer load with 0.5 W EC /W p PV capacity solely powered by the photovoltaic park, the solar-to-hydrogen system in Sines can reach an annual green hydrogen production of 27 g/W p PV and export 283 Wh/W p PV of surplus electricity to the grid. Continuous 24/7 electrolyzer operation increased the annual hydrogen output to 33 g/W p PV , with a reduced Levelized Cost of Hydrogen of €6.42/kg H2 . Overall, this work aims to advance green hydrogen production scale-up, fostering a more sustainable global economy.
S
SunView 深度解读
该开源光伏制氢系统建模框架对阳光电源光储氢一体化解决方案具有重要参考价值。研究验证了电池辅助PV-电解槽系统的技术可行性,与公司ST系列储能变流器、SG系列光伏逆变器可深度协同。模型中0.5 WEC/Wp PV容量配比及24/7连续运行策略,可指导iSolarCloud平台优化光储氢能量管理算法。研究显示的283 Wh/Wp PV并网盈余电力,验证了GFM/GFL控制技术在多能互补场景的应用潜力,为公司拓展绿氢制备系统集成业务提供技术支撑。