← 返回
光伏发电技术
★ 5.0
优化CdS下方的TiO2夹层以实现高效Sb2S3室内光伏器件
Optimizing a TiO2 interlayer beneath CdS for efficient Sb2S3 indoor photovoltaics
| 作者 | Yanqing Wanga · Guiju Hua · Nianwei Hea · Dongchen Guoa · Xingpei Liub · Ge Yaob · Wangchao Chena · Chengwu Shia · Fuling Guoa |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 301 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A uniform and conformal TiO2 interlayer enhances interface quality and electron transport in Sb2S3 indoor photovoltaics. |
语言:
中文摘要
摘要 硫化锑(Sb2S3)因其接近最优的带隙(约1.7 eV),与白光LED发射光谱高度匹配,已成为室内光伏(IPVs)领域的有力候选材料。在本研究中,我们在CdS缓冲层下方设计了一层TiO2夹层,以平整FTO表面并减少CdS的用量。通过将TiO2前驱体浓度优化至0.08 M,获得了均匀且保形的夹层,其具有理想的表面电势和形貌。采用该TiO2夹层的器件在1000勒克斯(3347 K)白光LED照射下实现了15.04%的功率转换效率(PCE),而使用0.12 M TiO2前驱体制备的夹层则在1个太阳光照条件下达到了6.72%的最高户外效率。进一步在空穴传输层中引入TMT-TTF后,器件的室内PCE提升至16.54%,户外PCE提升至7.14%。这些结果凸显了TiO2/CdS界面处载流子传输行为对光照强度的依赖性,强调了在高性能Sb2S3室内光伏器件中进行定制化界面工程的重要性。
English Abstract
Abstract Antimony sulfide (Sb 2 S 3 ) has emerged as a strong candidate for indoor photovoltaics (IPVs), owing to its near-optimal bandgap (∼1.7 eV) that aligns well with white LED emission. In this study, we engineer a TiO 2 interlayer beneath the CdS buffer layer to planarize the FTO surface and reduce CdS consumption. Optimizing the TiO 2 precursor concentration at 0.08 M results in a uniform, conformal interlayer with favorable surface potential and morphology. Devices incorporating this TiO 2 interlayer achieve a power conversion efficiency (PCE) of 15.04 % under 1000 lux (3347 K) white LED illumination, while the 0.12 M TiO 2 interlayer attains the highest outdoor efficiency of 6.72 % under 1 sun. Introducing TMT-TTF into the hole transport layer further elevates indoor PCE to 16.54 % and outdoor PCE to 7.14 %. These results underscore the dependence of charge transport behavior at the TiO 2 /CdS interface on illumination intensity, highlighting the need for tailored interfacial engineering in high-performance Sb 2 S 3 IPVs.
S
SunView 深度解读
该Sb2S3室内光伏技术对阳光电源室内能量采集应用具有启发意义。TiO2/CdS界面工程实现15.04%室内光电转换效率,可应用于iSolarCloud平台的物联网传感器节点自供电方案。其界面层优化思路与SG系列逆变器的MPPT算法在弱光条件下的优化逻辑相通,启发我们针对不同光照强度开发自适应控制策略。该技术可拓展至充电桩辅助供电系统,利用室内LED光源为低功耗监控模块供能,降低待机能耗,提升智能运维系统的能源自主性。