← 返回
光伏发电技术
★ 5.0
人工智能在聚光光伏热系统发展中的综合研究进展
A comprehensive review on the artificial intelligence for the development of thermal concentrating photovoltaic systems
| 作者 | Mohammad Karimzadeh Kolamroudi · Oluwasegun Henry Jaiyeob · Mustafa Ilkan · Babak Safaeie |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 301 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 太阳能 聚光光伏光热系统 效率 运行参数 光伏 |
语言:
中文摘要
摘要 在气候危机加剧和化石燃料枯竭的背景下,太阳能有望成为一种关键的可再生能源。尽管传统光伏(PVs)的效率有限,但聚光光伏-热(CPV/T)系统能够同时发电和产热,实现60%至80%的总效率,显著高于单独使用光伏系统所达到的效率。然而,CPV/T系统的性能高度依赖于辐照度波动、电池温度和跟踪误差等运行参数,这限制了其在实际应用中的广泛部署。人工智能(AI)技术,包括深度神经网络(DNNs)、强化学习(RL)以及混合算法,通过实现自适应热管理、故障检测、实时优化和高精度太阳跟踪,有效解决了上述问题。本文综述了人工智能领域的最新进展,特别聚焦于在CPV/T系统中的应用,系统分析了动态冷却控制、预测性维护、辐照度预测及系统设计等方面的研究方法。实验验证结果表明,由人工智能驱动的控制策略使热稳定性提高了超过35%,镜面错位率降低了≤85%,能量预测的决定系数R² > 0.99。然而,目前仍存在若干严重挑战,包括模型在不同气候条件下的迁移能力受限、离网环境下计算资源的约束、人工智能与太阳能工程之间的跨学科鸿沟,以及训练数据的稀缺性。本文揭示了进一步推动这一高影响力交叉领域发展的新机遇,以加速实现全球可再生能源发展目标。
English Abstract
Abstract Under the effects of increased climate urgency and fossil fuel depletion, solar energy can become a fundamental renewable energy source. Although photovoltaics (PVs) have limited efficiency, concentrating photovoltaic–thermal (CPV/T) systems generate electricity and heat simultaneously, achieving 60 to 80 % total efficiency, considerably higher than those obtained from PVs. However, the performance of CPV/T highly depends on operational parameters such as irradiance fluctuations, cell temperature, and tracking inaccuracies, limiting their use in real world applications. Artificial intelligence (AI) techniques including deep neural networks (DNNs), reinforcement learning (RL), and hybrid algorithms solve these problems by enabling adaptive thermal regulation, fault detection, real-time optimization and precision solar tracking. This paper has reviewed recent progresses in AI, with special focus on CPV/T systems, analyzing approaches for dynamic cooling control, predictive maintenance, irradiance forecasting and system design. Experimental validations revealed that AI-driven control increased thermal stability by > 35, %decreased mirror misalignment by ≤ 85 %, and obtained R 2 > 0.99 for energy prediction. However, serious limitations such as climate-specific model transferability, computational constraints in off-grid settings, interdisciplinary gaps between AI and solar engineering, and data scarcity still exist. This paper reveals new opportunities to accelerate this high-impact synergy toward global renewable energy goals.
S
SunView 深度解读
该CPV/T系统AI优化技术对阳光电源具有重要借鉴价值。文中深度神经网络实现的实时优化、故障检测和预测性维护技术,可直接应用于SG系列逆变器的MPPT算法优化和iSolarCloud平台的智能运维功能增强。AI驱动的热管理控制提升35%以上热稳定性的成果,对ST系列储能变流器的温控策略和PowerTitan系统的热管理优化具有参考意义。强化学习算法在辐照预测和动态控制方面R²>0.99的精度,可融入阳光电源的GFM/GFL控制技术,提升新能源并网系统的自适应能力和发电预测准确性,推动智慧能源管理平台的技术升级。