← 返回
光伏发电技术 ★ 5.0

不同布置方式下耦合水/气冷却通道的双CPV/TEG单元性能分析

Performance analysis of double CPV/TEG units in different arrangements coupled with water/air cooling channels

作者 Fatih Selimefendigil · Damla Okulu · Hakan F.Öztop
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Energy and exergy analysis of two CPV/TEG units are studied.
语言:

中文摘要

摘要 集中光伏发电(CPV)面板在运行过程中会达到极高的温度,这对系统的性能产生不利影响。针对这些系统的热管理已提出多种方法。在许多研究中,集中光伏/热电联产(CPV/T)系统与热电发电机(TEG)结合使用,从而实现了更优的冷却性能和更高的发电功率。本研究通过将两个相同的CPV-TEG单元装配于三种不同的通道设计上,探究了不同通道布置方式对CPV/T-TEG系统性能的影响。采用合适的单冷却通道设计,对以不同方式组合的两个CPV-TEG单元进行了能量与㶲分析。考虑了CPV/TEG单元的垂直布置(模型1)、倾斜布置(模型2)和水平布置(模型3),并在通道中分别采用空气或水作为冷却介质。对于固定雷诺数为1000的情况,分别以空气和水为冷却流体,研究了不同的CPV/TEG布置方式(模型1、2和3)以及冷却流体入口温度(15°C至35°C之间)的影响。采用伽辽金加权残值有限元法(FEM)作为求解器,分析了不同布置方式及CPV/TEG单元运行参数下的温度分布、光伏(PV)和TEG发电功率、以及基于水和空气系统的能量与㶲效率。结果表明,在所有布置方式中,水冷式CPV/T-TEG系统的电池温度均低于风冷式系统,且其PV和TEG输出功率更高。当比较最高PV输出功率时,B单元水冷模型2比A单元风冷模型1高出4.23%。在空气和水冷双CPV-TEG系统中,模型2A均获得了最高的TEG输出功率,其中水冷模型2A的TEG电功率比风冷模型2A高出18.5%。水基和空气基模型的TEG效率分别为1.664%和15.9%。当入口温度从15°C升高至35°C时,水冷模型2B的PV电池温度上升了33.74%,而风冷模型1A上升了25.7%。最高总㶲效率分别出现在水冷模型2和风冷模型3中;在最低入口温度下,水冷模型2的总㶲效率比风冷模型3高出2.8%。不同的通道布置方式和所采用的冷却流体对双CPV-TEG系统性能具有显著影响。在未来的研究中,可通过采用形状优化算法设计最优通道结构,并在通道内引入挡板,进一步提升PV和TEG的效率。此外,在通道系统中应用创新性流体替代传统冷却流体,可能有助于进一步增强此类冷却系统的性能表现。

English Abstract

Abstract The extremely high temperatures reached by concentrated photovoltaic (CPV) panels have undesirable consequences on the performance of these systems. Different approaches are offered for thermal management of those systems. Concentrated photovoltaic/thermal (CPV/T) systems are utilized with thermoelectric generators (TEGs) in many studies. Thus, both a more advanced cooling performance and higher electrical power are achieved. In this study, the effects of different channel arrangements on CPV/T-TEG system are investigated by using two identical CPV-TEG units which are assembled on three different channel designs. Energy and exergy analysis of two CPV-TEG units which are combined in different arrangements are studied with appropriate single cooling channel design. Vertical arrangement (Model 1), inclined arrangement (Model 2) and horizontal arrangement (Model 3) of CPV/TEG units are taken into consideration while either air or water is used in the channels as the cooling medium. Different CPV/ TEG arrangements (Models 1,2 and 3) and cooling fluid inlet temperatures (between 15 °C to 35 °C) are considered for both air and water as the cooling fluid for a fixed value of Reynolds number of 1000. Galerkin weighted residual finite element method (FEM) is utilized as the solver while temperature distributions, PV and TEG electrical powers, energy and exergy efficiencies of water and air-based systems are analyzed for different arrangements and operating parameters of CPV/TEG units. Water-CPV/T-TEGs has lower cell temperature and higher PV and TEG power than air-CPV/T-TEGs in each of the arrangements for both units. When highest PV powers are compared, water-Model 2 of B unit is 4.23 % higher as compared to air-Model 1 of unit A. The highest TEG power is achieved with Model 2A in both air- and water-based dual CPV-TEG. TEG electrical power of water-Model 2A is 18.5 % higher than that of air-Model 2A. TEG efficiency for the water and air-based models are 1.664 % and 15.9 %, respectively. The water-Model 2B’s PV cell temperature increases by 33.74 % and the air-Model 1A’s increases by 25.7 % when the input temperature is increased from 15 °C to 35 °C. The highest total exergy efficiency is obtained with water in Model 2 and air in Model 3. The total exergy efficiency of the water-based Model 2 at the lowest inlet temperature is 2.8 % higher than that of air-based Model 3. Different channel arrangements and applied cooling fluids had an impact on the dual CPV-TEG. For future studies, the efficiency of both PV and TEG can be improved with optimum channel design by using shaped optimized algorithms and utilization of baffles in channels. In addition, the application of an innovative fluid instead of the conventional fluid in the channel system may enable the enhancement of these cooling system performances.
S

SunView 深度解读

该CPV/T-TEG热电联供技术对阳光电源光伏逆变器热管理具有重要参考价值。研究表明水冷系统比风冷降温效果提升33.74%,可应用于SG系列大功率逆变器散热优化。倾斜布局(Model 2)的能效最优方案,可启发PowerTitan储能系统PCS功率模块排布设计。热电发电技术可集成到1500V系统中实现余热回收,提升系统综合能效。建议结合SiC器件低损耗特性与优化流道设计,通过iSolarCloud平台实现温度场预测性维护,为高功率密度逆变器提供创新热管理解决方案。