← 返回
光伏发电技术
★ 5.0
相变微胶囊集成于光伏电解系统以增强太阳能制氢性能
Integration of phase change microcapsules in photovoltaic electrolysis system for enhanced solar hydrogen production
| 作者 | Jiwei Li · Chenglin Fu · Bohao Li · Liwu Zhou · Ze Ren · Xinlong Lu · Dengwei Jing |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 302 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A cured phase change composite layer was developed to regulate the temperature of photovoltaic-electrolysis systems. |
语言:
中文摘要
被动式热管理是提升太阳能制氢用光伏-电解(PV-EC)系统效率与可扩展性的关键手段,然而目前仍缺乏深入研究。本研究将一种固化的相变材料(PCM)界面层集成至PV-EC系统中,以调控光伏(PV)组件温度并提高氢气产量。具体而言,合成了石蜡@二氧化硅微胶囊,并将其嵌入聚二甲基硅氧烷(PDMS)基体中,形成具有高导热性能的复合材料,能够被动调节PV模块的工作温度。在所合成的不同样品中,核壳比为1:1.5的微胶囊表现出更优异的热稳定性和封装性能。实验结果表明,当微球与PDMS的质量比为0.3、厚度为5 mm时,该复合材料实现了最大14.4 °C的PV降温效果。然而,质量比为0.2、厚度为3 mm的复合材料在热调控能力与电学性能之间达到了最优平衡。基于上述结果,构建了一个系统级的PV-PCM-EC模型,该模型包含一个由50条并联支路(每条支路由两个串联单元组成)构成的100单元PV阵列,以及一个三单元质子交换膜(PEM)电解槽阵列。优化后的系统实现了22.2%的太阳能到氢气转换效率,相较于未冷却的基准系统提升了9.9%。这些结果凸显了集成式相变材料复合材料作为高效且可扩展的被动热管理策略,在PV-PCM-EC太阳能制氢系统中的巨大应用潜力。
English Abstract
Abstract Passive thermal management is a critical yet underexplored approach for enhancing the efficiency and scalability of photovoltaic-electrolysis (PV-EC) systems for solar hydrogen production. In this study, a cured phase change material (PCM) interfacial layer was integrated into a PV-EC system to regulate PV temperature and enhance hydrogen output. Typically, paraffin@silica microcapsules were synthesized and embedded in a polydimethylsiloxane (PDMS) matrix to form a thermally conductive composite capable of passively regulating the operating temperature of the PV module. Among the synthesized variants, microcapsules with a core-to-shell ratio of 1:1.5 demonstrated superior thermal stability and encapsulation performance. Experimental results indicated that the composite with a microsphere-to-PDMS mass ratio of 0.3 and a thickness of 5 mm achieved the maximum PV temperature reduction of 14.4 °C. Nevertheless, the composite with a mass ratio of 0.2 and a thickness of 3 mm offered the optimal trade-off between thermal regulation and electrical performance. Based on these findings, a system-level PV-PCM-EC model was developed. The model comprised a 100-cell PV array arranged in 50 parallel strings of two series-connected units, and a three-unit proton exchange membrane (PEM) electrolyzer array. The optimized system achieved a solar-to-hydrogen efficiency of 22.2 %, representing a 9.9 % improvement over the uncooled baseline. These results underscore the potential of integrated PCM composites as an effective and scalable passive thermal management strategy for PV-PCM-EC solar hydrogen production systems.
S
SunView 深度解读
该光伏-电解制氢系统的被动热管理技术对阳光电源SG系列光伏逆变器及氢能业务具有重要参考价值。相变材料复合层可使光伏组件降温14.4°C,系统制氢效率提升9.9%达22.2%,验证了温度控制对光伏-电解耦合系统的关键作用。可启发我司在大功率光伏逆变器散热设计中引入相变材料方案,结合MPPT优化算法动态调节工作点以适应温度变化;同时为氢能系统集成提供热管理策略,通过iSolarCloud平台实现光伏-制氢全链路温度监控与效率优化,推动绿氢制备解决方案的商业化落地。