← 返回
储能系统技术
★ 5.0
一种基于位点选择的多元素共掺杂策略在三层铋基层状钙钛矿类结构铁电体中实现高储能性能
A site-selection multi-element co-doping strategy in three-layered bismuth-based layered perovskite-like structure ferroelectrics leads to large energy storage capability
| 作者 | Nano Energy |
| 期刊 | Applied Physics Letters |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 126 卷 第 8 期 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 介电电容器 储能密度 多元素共掺杂 铋基层状钙钛矿 剩余极化 |
语言:
中文摘要
提高介电电容器的能量存储密度是电力电子器件发展中的关键挑战。本研究在具有高极化和高居里温度的铋基层状钙钛矿类铁电体Bi4Ti3O12中,采用位点选择性多元素共掺杂策略,通过Pr3+在A位取代Bi3+引入阳离子无序,破坏长程铁电有序,显著降低剩余极化;同时Mn4+在B位取代Ti4+因d3与d0电子构型差异,延缓极化饱和。此外,掺杂浓度增加持续抑制薄膜漏电流,归因于微观结构优化与氧空位抑制,从而显著提升储能性能。
English Abstract
Improving the energy storage density of dielectric capacitors, which are widely used in power electronic devices, is a continuous challenge. In this work, a site-selection multi-element co-doping strategy was used by doping Pr atoms at the A-site and then doping Mn atoms at the B-site in bismuth-based layered perovskite-like structure prototype ferroelectrics Bi4Ti3O12 due to its large polarization and high Curie temperature. On the one hand, the substitution of Bi3+ with Pr3+ at the A-site introduces significant cation disorder, which disrupts the long-range ferroelectric order, consequently leading to a reduction in remnant polarization. On the other hand, the substitution of Ti4+ by Mn4+ at the B-site results in delayed polarization saturation due to the different electronic configurations between d3 Mn4+ and d0 Ti4+. In addition, the leakage current of the thin film exhibits a continuous decrease with doping concentration, which can be attributed to microstructural modifications in
S
SunView 深度解读
该铋基铁电薄膜储能技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统的直流侧电容优化具有重要价值。研究通过多元素共掺杂实现的高储能密度介电电容器,可替代传统电解电容作为母线支撑电容,提升功率密度和可靠性。其高居里温度特性适配储能变流器宽温工作需求,低漏电流特性可降低损耗提升效率。该位点选择掺杂策略为阳光电源功率模块中薄膜电容的材料设计提供新思路,特别是在SiC/GaN高频开关应用场景下,高介电强度薄膜电容可减小体积、提升系统集成度,助力储能系统向高功率密度和长寿命方向发展。