← 返回
系统并网技术
★ 4.0
下一代RRAM和5G/6G电容器用Ag/Al/SiO2/Si/Ag MIS结构中的巨介电常数与缺陷调控导电性
Colossal permittivity and defect-engineered conduction in Ag/Al/SiO2/Si/Ag MIS structures for next-generation RRAM and 5G/6G capacitors
| 作者 | A.Asher |
| 期刊 | Solid-State Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 230 卷 |
| 技术分类 | 系统并网技术 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Ag/Al/SiO2/Si/Ag (MIS) structure has emerged as a promising candidate for next-generation electronic and optoelectronic applications. |
语言:
中文摘要
摘要 Ag/Al/SiO2/Si/Ag金属-绝缘体-半导体(MIS)结构展现出显著的介电与电学特性,使其成为下一代电子器件应用的有力候选者。本研究通过阻抗谱、介电分析以及宽频范围(1 kHz–20 MHz)、温度范围(80–400 K)和电压范围(±5 V)内的交流电导率测量,系统地探究了该双金属MIS结构的巨介电常数、缺陷介导的导电行为及弛豫动力学。关键结果表明,Ag/Al电极构型诱导出独特的界面极化效应,从而产生超高的介电常数(低频下ε′ > 10³)和低损耗正切值(tanδ < 0.1),适用于5G/6G技术中的高频电容器。该结构还表现出通过银细丝形成实现的电压可调阻变特性,能够实现超低功耗、耐久性增强的阻变随机存取存储器(RRAM)。新颖之处在于:与传统的Al/SiO2/Si器件不同,这种双金属设计利用银的高离子迁移率来调控缺陷态和导电路径,导致以下现象:由Ag/SiO2和SiO2/Si界面处的空间电荷极化引起的巨介电常数;通过热激活跳跃和Fowler-Nordheim隧穿机制实现的缺陷工程化导电;以及归因于电荷捕获/释放动力学的高频负电容效应。新应用包括:阻变存储器(RRAM)——可控的银迁移实现了纳米尺度细丝开关,工作电压低(<3 V);高频电容器——在高达1 MHz频率下保持稳定的ε′和低tanδ,满足5G/6G集成无源元件的需求;柔性电子器件——与聚合物复合材料(如PVA-SiO2)兼容,可集成至可拉伸基底中。本文针对界面缺陷控制和热稳定性等挑战提出了屏障层和化学计量优化等解决方案。本研究将基础介电谱学与实际器件工程相结合,为推进Ag/Al/SiO2/Si/Ag结构在纳米电子学及其他领域的应用提供了路线图。
English Abstract
Abstract The Ag/Al/SiO 2 /Si/Ag metal–insulator-semiconductor (MIS) structure exhibits remarkable dielectric and electrical properties, making it a promising candidate for next-generation electronic applications. This study systematically investigates the colossal permittivity, defect-mediated conduction, and relaxation dynamics of the dual-metal MIS structure using impedance spectroscopy, dielectric analysis, and AC conductivity measurements across wide frequency (1 kHz–20 MHz), temperature (80–400 K), and voltage (±5 V) ranges. Key findings reveal that the Ag/Al electrode configuration induces unique interfacial polarization effects, leading to ultrahigh dielectric constants (ε′ > 103 at low frequencies) and low loss tangents (tanδ < 0.1) suitable for high-frequency capacitors in 5G/6G technologies. The structure also demonstrates voltage-tunable resistive switching via Ag filament formation, enabling ultra-low-power resistive random-access memory (RRAM) with enhanced endurance. Novelty: Unlike conventional Al/SiO 2 /Si devices, the dual-metal design leverages Ag’s high ionic mobility to modulate defect states and conduction pathways, resulting in: Colossal permittivity from space charge polarization at Ag/SiO 2 and SiO 2 /Si interfaces. Defect-engineered conduction via thermally activated hopping and Fowler-Nordheim tunneling. Negative capacitance effects at high frequencies, attributed to charge trapping/detrapping dynamics. New Applications: RRAM : Controlled Ag migration enables nanoscale filamentary switching with low operating voltages (<3 V). High-frequency capacitors : Stable ε′ and low tanδ up to 1 MHz meet demands for 5G/6G integrated passives. Flexible electronics : Compatibility with polymer hybrids (e.g., PVA-SiO 2 ) allows integration into stretchable substrates. Challenges such as interfacial defect control and thermal stability are addressed, with proposed solutions including barrier layers and stoichiometric optimization. This work bridges fundamental dielectric spectroscopy with practical device engineering, offering a roadmap for advancing Ag/Al/SiO 2 /Si/Ag structures in nanoelectronics and beyond.
S
SunView 深度解读
该MIS结构的超高介电常数和低损耗特性对阳光电源储能系统具有重要价值。其巨介电常数(ε'>10³)和低损耗角(tanδ<0.1)可优化ST系列PCS的直流母线电容和EMI滤波器设计,提升功率密度。缺陷工程调控的导电机制为SiC/GaN功率器件的栅极介质优化提供思路。RRAM的低压切换特性(<3V)可应用于iSolarCloud平台的边缘计算存储模块。5G/6G高频电容特性契合充电桩通信模块需求,支持V2G双向通信的高频滤波。建议重点关注界面缺陷控制技术在宽禁带半导体封装中的应用潜力。