← 返回
光伏发电技术
★ 5.0
基于静止卫星数据的太阳能发电临近预报Transformer方法
Transformer approach to nowcasting solar energy using geostationary satellite data
| 作者 | Ruohan Li · Dongdong Wang · Zhihao Wang · Shunlin Liang · Zhanqing Li · Yiqun Xi · Jiena He |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Transformer-based [deep learning](https://www.sciencedirect.com/topics/engineering/deep-learning "Learn more about deep learning from ScienceDirect's AI-generated Topic Pages") approach (SolarFormer) is proposed for near-real-time solar radiation nowcasting. |
语言:
中文摘要
到达光伏面板的全球水平辐照度(GHI)在空间和时间上的不可预测性,给区域尺度上稳定且经济高效地将太阳能电力接入电网带来了挑战。因此,亟需一种及时且准确的大规模GHI临近预报方法,而现有大多数研究在此方面仍显不足。本研究提出了SolarFormer模型,该模型利用卫星数据并结合门控循环单元,实现近实时的GHI估算;同时引入时空Transformer模块,以15分钟为间隔提供最长3小时的预报,且在较长的预报时效内仍能保持较高的预报精度而不出现显著退化。SolarFormer仅需GOES-16与Himawari-8卫星共有的选定波段信息作为动态输入,因而可在这些卫星覆盖的所有区域实现近实时应用,具有良好的可扩展性和计算效率,适用于大规模能源规划。我们使用2018年七个SURFRAD地面观测站的实测GHI数据对模型预报结果进行了验证。模型在1至3小时的预报时效下,分别实现了每小时预报均方根误差(相对均方根误差)93.8 W/m²(15.0%)、118.9 W/m²(19.8%)和129.1 W/m²(24.2%)。与现有的每小时更新的数值天气预报模型(如高分辨率快速更新系统,High-Resolution Rapid Refresh)以及深度学习模型(如ConvLSTM)相比,SolarFormer表现出更低的均方根误差。此外,由于SolarFormer在计算和内存效率方面优于上述模型,本研究还强调了其在延长预报时效方面的潜力,有望为长期能源规划、电力市场竞价与出清提供支持。然而,随着预报时效的增加,SolarFormer表现出累积偏差,且在清晨时段因夜间可见光卫星波段失效而难以准确预测GHI,这指出了未来研究中需要改进的方向。
English Abstract
Abstract Unpredicted spatial and temporal variability of global horizontal irradiance (GHI) reaching the photovoltaic panels presents a challenge for integrating solar power into the grid stably and cost-effectively at a regional scale. Therefore, there is a recognized demand for large-scale GHI nowcasting that is both timely and accurate, an area where most existing studies fall short. This study introduces the SolarFormer model, which utilizes satellite data and incorporates a gated recurrent unit for near real-time GHI estimation. It also includes a space-time transformer to provide forecasts with a 3-h lead time at 15-min intervals, maintaining accuracy without significant degradation over extended lead times. SolarFormer requires only the selected satellite band information shared by GOES-16 and Himawari-8 as the dynamic input, enabling near-real-time application across all areas covered by these satellites. This feature makes it accessible and efficient for large-scale energy planning. We validate the forecasting result with the ground-measured GHI over seven SURFRAD stations in 2018. The model achieves an hourly prediction root-mean-square error (relative root-mean-square error) of 93.8 W/m 2 (15.0 %), 118.9 W/m 2 (19.8 %), and 129.1 W/m 2 (24.2 %) with 1–3 h lead time respectively. These results demonstrate lower root-mean-square error compared to existing hourly updated numerical weather prediction modeling, such as High-Resolution Rapid Refresh, and deep learning models, such as ConvLSTM. Moreover, the study highlights the potential of SolarFormer for extended lead-time forecasting due to its high computation and memory efficiency compared with the above-mentioned models, potentially benefiting long-term energy planning and power market bidding and clearing. However, SolarFormer exhibits accumulated bias as the predicted lead time increases and faces challenges in predicting GHI in the early morning due to the invalid visible satellite bands during the night, suggesting areas for improvement in future studies.
S
SunView 深度解读
该SolarFormer卫星辐照度预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。3小时提前量、15分钟间隔的GHI精准预测可优化储能充放电策略,提升电网友好性。结合iSolarCloud平台可实现区域级光储协同调度,降低预测偏差导致的弃光率。其近实时特性可增强SG逆变器MPPT算法的前瞻性,改善GFM/GFL控制响应。建议将该时空Transformer架构融入智能运维系统,支撑电力市场竞价与长期能源规划决策。