← 返回
风电变流技术 ★ 5.0

采用快速平滑二阶滑模控制与神经模糊估计及变增益鲁棒精确输出微分器的风能转换系统性能增强

Enhanced wind energy conversion system performance using fast smooth second-order sliding mode control with neuro-fuzzy estimation and variable-gain robust exact output differentiator

作者 Ameen Ullah · Safeer Ullah · Tanzeel Ur Rahman · Irfan Sami · Ata Ur Rahman · Baheej Alghamdi · Jianfei Pan
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Utilizes Fast Smooth Second-Order Sliding Mode Control.
语言:

中文摘要

摘要 风能转换系统(WECS)常因风速的随机性和间歇性而面临挑战,导致发电输出功率与波动的电力负载需求之间出现不匹配。为有效应对这一问题,先进的最大功率点跟踪(MPPT)策略对于最大化功率提取至关重要。本研究提出了一种基于快速平滑二阶滑模控制(FSSOSMC)的新型MPPT方法,旨在优化与永磁同步发电机(PMSG)耦合的3 kW定桨距变速WECS的功率输出。为了在系统参数存在不确定性与非线性的情况下仍保持控制的鲁棒性,采用了基于Takagi–Sugeno–Kang(TSK)模糊推理系统的离线神经模糊算法。该方法能够准确估计控制输入中的非线性与不确定分量,从而提升MPPT控制技术的性能与鲁棒性。此外,引入了变增益鲁棒精确输出微分器(VG-REOD),以精确估计轴转速,解决速度估计困难以及导数信息缺失的问题。所提出的基于FSSOSMC的MPPT策略在随机风速剖面、参数变化和风速波动条件下,与超螺旋滑模控制(STSMC)和反馈线性化控制(FBLC)的MPPT策略进行了对比测试。结果表明,所提出的方法实现了98.2%的跟踪精度和98.9%的整体效率,显著优于STSMC(97.1%精度,95.75%效率)和FBLC(95.4%精度,93.82%效率)。FSSOSMC方法还将调节时间缩短至7.879秒,上升时间减少至1.062秒,超调量仅为10.022%,稳态误差低至0.0015088。这些结果表明,该方法具有优异的跟踪性能、高精度、快速的动态响应、极小的抖振以及强健的全局鲁棒性。所提方法的有效性通过大量的MATLAB/Simulink仿真得到了验证。

English Abstract

Abstract Wind energy conversion systems (WECS) often face challenges due to the stochastic and intermittent nature of wind, leading to a mismatch between output power generation and fluctuating electrical load requirements. To effectively address this issue, an advanced Maximum Power Point Tracking (MPPT) strategy is crucial for maximizing power extraction. This study introduces a novel MPPT approach based on Fast Smooth Second-Order Sliding Mode Control (FSSOSMC) to optimize power output from a 3 kW fixed-pitch variable speed WECS coupled with a permanent magnet synchronous generator (PMSG). To ensure robustness despite uncertain, nonlinear system parameters, an offline neuro-fuzzy algorithm utilizing the Takagi–Sugeno–Kang (TSK) fuzzy inference system is implemented. This method accurately estimates the nonlinear and uncertain components of the control input, enhancing the performance and robustness of the MPPT control techniques. Additionally, a Variable-Gain Robust Exact Output Differentiator (VG-REOD) is employed to accurately estimate the shaft speed, addressing issues related to speed estimation and missing derivative information. The proposed FSSOSMC-based MPPT strategy was benchmarked against super-twisting sliding mode control (STSMC) and feedback linearization control (FBLC) MPPT strategies under stochastic wind speed profiles, parameter variations, and wind speed fluctuations. The results show that the proposed method achieves a tracking accuracy of 98.2% and an overall efficiency of 98.9%, significantly outperforming STSMC (97.1% accuracy, 95.75% efficiency) and FBLC (95.4% accuracy, 93.82% efficiency). The FSSOSMC method also reduced the settling time to 7.879 s and the rise time to 1.062 s, with minimal overshoot of 10.022% and a steady-state error of 0.0015088. These results demonstrate superior tracking performance, high precision, rapid dynamic response, minimal chattering, and robust global performance. The efficacy of the proposed method is validated through extensive MATLAB/Simulink simulations.
S

SunView 深度解读

该快速平滑二阶滑模MPPT技术对阳光电源风电变流器及储能系统具有重要借鉴价值。其98.9%的系统效率和98.2%的跟踪精度显著优于传统方法,可应用于SG风电变流器优化最大功率点跟踪算法。神经模糊估计与鲁棒微分器的融合控制策略,可移植至ST系列PCS的GFM控制中,提升新能源波动工况下的动态响应速度(上升时间1.062s)和稳态精度。该技术对PowerTitan储能系统在风储耦合场景的功率平抑控制具有创新启发,可增强系统抗扰性并降低控制抖振,助力iSolarCloud平台实现更精准的功率预测与智能调度。