← 返回
光伏发电技术
★ 5.0
基于新型扇形板脉动热管散热器的高倍聚光光伏模块热性能实验研究
Experimental investigation on the thermal performance of high-concentrated photovoltaic module utilizing the thermal sink of a novel Fan-shaped plate pulsating heat pipe
| 作者 | Wei-Wei Wangac1 · Teng Liub1 · Jun-Zhe Guo · Bin Li · Hong-Liang Zhang · Yang Cai · Fu-Yun Zhao · Di Liu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A Fan Shaped- Plate Pulsating [Heat Pipe](https://www.sciencedirect.com/topics/engineering/heat-pipes "Learn more about Heat Pipe from ScienceDirect's AI-generated Topic Pages") (FS-PPHP) for HCPV cells cooling was firstly developed; |
语言:
中文摘要
摘要 高强度太阳光聚集在光伏电池上会导致半导体温度显著升高,从而降低光电转换效率并可能引发光伏组件的不可逆故障。为此,在热设计中创新性地提出了一种超薄扇形板脉动热管(FS-PPHP),通过优化传统平行流道结构,实现对小尺度HCPV电池的高效冷却。本文全面分析和讨论了充液率、倾斜角度、工质种类以及加热功率对FS-PPHP传热性能的影响。结果表明,蒸发段与冷凝段的变直径设计有助于工质回流至加热区域,并增大相邻流道间的压力差势,从而确保FS-PPHP在不同工况下更平稳地启动。在充液率为57%、倾斜角为45°的条件下,FS-PPHP在变输入功率下表现出优异的温度振荡特性,最低热阻可达0.5012 °C/W。与去离子水相比,采用纯丙酮作为FS-PPHP的工作介质可使平均热阻降低23%,显示出FS-PPHP优越的传热能力。随后,将FS-PPHP应用于模拟太阳辐射条件下的HCPV电池冷却,探究其对HCPV电池热特性和输出电功率特性的影响。研究表明,FS-PPHP能显著降低电池工作温度,提升HCPV模块的发电性能;在太阳辐照强度为4044.44 W/m²时,结合FS-PPHP的HCPV电池温度维持在62.8至63.9 °C之间。与自然冷却相比,该配置使输出功率提高了56.1%,平均温度降低了66.8%。
English Abstract
Abstract High sunlight concentration on photovoltaic cells causes a substantial increase in the temperature of semiconductor, which leads to a decrease in conversion efficiency and irreversible faults of PV modules . Thereby, an ultra-thin Fan Shaped-Plate Pulsating Heat Pipe (FS-PPHP) was innovatively proposed by optimizing the traditional parallel channel structure in the thermal design for efficient cooling small scale HCPV cells. The effects of filling ratios, angles, working fluids and heat inputs on thermal transportation performance of FS-PPHP were comprehensively analyzed and discussed. The results indicated that the variable diameter design of the evaporation and condensation sections facilitates the working fluid return to the heating section and enlarges the imbalance pressure potential between adjacent channels, ensuring smoother startup of the FS-PPHP at various conditions. And the FS-PPHP exhibits excellent temperature oscillation characteristics at a filling ratio of 57 % and angle of 45° under variable input power, with a minimum thermal resistance of 0.5012 °C/W. Compared to deionized water , utilizing pure acetone as the working medium in the FS-PPHP reduces the average thermal resistance by 23 %, demonstrating superior heat transfer capability of FS-PPHP. Subsequently, the FS-PPHP was applied for cooling HCPV cells under simulated solar radiation, and its effect on the thermal and the output power characteristics of the HCPV cells was explored. The FS-PPHP could significantly reduce cell temperatures and enhance the generated electricity performance of HCPV modules, it was observed that in conjunction with from the FS-PPHP, the temperature of the HCPV cell ranged from 62.8 to 63.9 °C for solar irradiation of 4044.44 W/m 2 . Compared to natural cooling, this configuration resulted in a 56.1 % increase in output power and a 66.8 % average temperature reduction.
S
SunView 深度解读
该扇形板脉动热管技术对阳光电源高功率密度产品具有重要应用价值。在SG系列大功率光伏逆变器中,功率器件散热是关键瓶颈,该超薄热管结构可优化IGBT/SiC模块的温度管理,降低热阻23%意味着可提升功率密度或延长器件寿命。对于PowerTitan储能系统,该技术可改进电池簇温控方案,解决高倍率充放电时的局部热点问题。扇形变径设计启发我们在三电平拓扑的散热优化中采用非均匀流道布局,特别适用于1500V高压系统的紧凑化设计。建议在充电桩大功率模块和海外高温地区部署的逆变器产品中进行适配性研究。