← 返回
光伏发电技术 ★ 5.0

利用深度生成模型扩展日内太阳辐射预测时效

Extending intraday solar forecast horizons with deep generative models

作者 A.Carpentieri · Doris Folini · J.Leinonenc1 · A.Meyer
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 We present SHADECast: a novel deep generative model for solar irradiance nowcasting.
语言:

中文摘要

地表太阳辐照度(SSI)在应对气候变化中发挥着关键作用——作为一种丰富且非化石的能源,主要通过光伏发电(PV)加以利用。随着SSI在总能源生产中所占比例不断上升,其固有的间歇性(主要由云层效应引起)对电力系统的稳定性构成了挑战。缓解这一稳定性问题需要具备高精度、量化不确定性、接近实时、区域尺度的SSI预测,预测时效为几分钟至数小时,以支持稳健的实时电网管理。目前最先进的临近预报方法通常只能满足上述部分要求。本文提出SHADECast,一种基于深度生成扩散模型的概率性时空临近预报方法,用于预测SSI。该模型以云层演变的确定性特征为条件,引导概率集合预报,并依托近实时卫星数据构建。我们证明,SHADECast在各种天气情景下均能提供更优的预报质量、可靠性与准确性。本模型生成了真实且具有时空一致性的预测结果,将当前最先进水平的预报时效在15至120分钟的范围内不同地区延长了26分钟。我们这种融合物理信息的生成式方法,在极端值预测方面相较于最先进的确定性模型性能提升高达60%,凸显了相较于传统确定性方法,采用概率建模描述云量变化的优势。同时,该模型在极端值预测任务上也优于现有的概率性基准方法。最后,SHADECast能够赋能电网运营商和能源交易者做出更加科学的决策,保障电力系统稳定,并促进多地点光伏能源的无缝集成。

English Abstract

Abstract Surface solar irradiance (SSI) plays a crucial role in tackling climate change — as an abundant, non-fossil energy source, exploited primarily via photovoltaic (PV) energy production. With the growing contribution of SSI to total energy production, the stability of the latter is challenged by the intermittent character of the former, arising primarily from cloud effects. Mitigating this stability challenge requires accurate, uncertainty-aware, near real-time, regional-scale SSI forecasts with lead times of minutes to a few hours, enabling robust real-time energy grid management. State-of-the-art nowcasting methods typically meet only some of these requirements. Here we present SHADECast, a deep generative diffusion model for the probabilistic spatiotemporal nowcasting of SSI, conditioned on deterministic aspects of cloud evolution to guide the probabilistic ensemble forecast, and based on near real-time satellite data. We demonstrate that SHADECast provides improved forecast quality, reliability, and accuracy in all weather scenarios. Our model produces realistic and spatiotemporally consistent predictions extending the state-of-the-art forecast horizon by 26 min over different regions with lead times of 15-120 min. Our physics-informed generative approach leads to up to 60% performance improvement in extreme value prediction over the state-of-the-art deterministic models, showcasing the advantage of probabilistic modeling of cloudiness over the classical deterministic approach. It also surpasses the probabilistic benchmarks in predicting extreme values. Finally, SHADECast empowers grid operators and energy traders to make informed decisions, ensuring stability and facilitating the seamless integration of PV energy across multiple locations simultaneously.
S

SunView 深度解读

该深度生成模型预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。SHADECast将光伏出力预测时间窗口延长至120分钟,预测精度提升60%,可显著优化储能系统的充放电策略和容量配置。结合iSolarCloud平台,该概率预测方法能提升多站点协同调度能力,增强电网稳定性。建议将此类卫星云图+AI预测技术集成到智慧运维系统,为GFM/GFL控制策略提供前瞻性数据支撑,实现源网荷储精准协同。