← 返回
风电变流技术 ★ 5.0

考虑维护路径与资源分配的城市微风电场维护策略

Maintenance strategy for urban micro wind farm considering maintenance route and resource allocation

作者 Faqun Qia · Anming Zhang · Xinyi Fua · Wenfei Zhab · Yuanhang Sunc
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A hybrid algorithm optimizing maintenance routes and resource allocation for Urban Micro Wind Farms (UMWF) is proposed to reduce costs and enhance efficiency.
语言:

中文摘要

摘要:新兴的城市微风电场(UMWF)正变得日益普遍,优化其维护策略对于降低运营成本并提高风能利用效率至关重要。本研究通过综合考虑维护路径与资源分配,构建了城市微风电场维护策略的优化问题。为求解该问题,首先提出了高效维护价值(EMF)作为衡量维护价值的目标函数,并在此基础上设计了一种基于随机变量邻域下降与布谷鸟搜索的混合离散化人工鱼群算法(RVNDCS-HDAFSA),用于搜索最优维护策略。为验证所提混合算法的局部搜索能力,开展了相关实验;同时,在不同规模问题上与其他算法进行了广泛的对比实验,以验证RVNDCS-HDAFSA算法的有效性。对比实验结果及方差分析(ANOVA)表明,HDAFSA在求解中大规模问题时相较于现有算法展现出更优的性能。最后,实际应用实验验证了本文所提出方法的有效性。

English Abstract

Abstract Emerging urban wind farms (UMWF) are becoming increasingly prevalent, and optimizing maintenance strategy for UMWF has become crucial for reducing costs and improving wind power efficiency. This research formulates an optimization problem of UMWF by considering the maintenance route and resources. To solve this problem, firstly, the Efficient Maintenance Value (EMF) is proposed as an objective function to measure the maintenance value, based on which a novel Random Variable Neighborhood Descent and Cuckoo Search-based Hybrid Discretized Artificial Fish Swarm Algorithm (RVNDCS-HDAFSA) is proposed to search the optimal maintenance strategy. Experiments are conducted to verify the local search capabilities of the hybrid algorithm, and extensive comparison experiments with the other algorithms are conducted at different scales to validate the effectiveness of the RVNDCS-HDAFSA algorithm; the result of the comparison experiments and the ANOVA shows that the HDAFSA demonstrates a superior capability in solving the medium-scale and large-scale problems compared to the existing algorithm. In conclusion, the practical application experiments validate the effectiveness of our proposed approach.
S

SunView 深度解读

该城市微风电场维护优化研究对阳光电源智慧运维体系具有重要借鉴价值。论文提出的维护路径与资源配置联合优化方法,可直接应用于iSolarCloud平台的新能源场站运维调度模块。其高效维护价值(EMF)评估模型与混合优化算法,能够增强平台对分布式风光储混合电站的预测性维护能力,特别适用于城市屋顶光伏集群、充电站网络等分散式资产的巡检路径规划。该算法在中大规模问题上的优越性能,可支撑阳光电源构建覆盖ST储能系统、SG逆变器阵列的智能运维决策引擎,降低运维成本,提升设备可用率与发电效率。