← 返回
光伏发电技术
★ 5.0
基于梯级水电主动调节并考虑多输电通道约束的水光互补调度
Hydro-photovoltaic complementary dispatch based on active regulation of cascade hydropower considering multi-transmission channel constraints
| 作者 | Zhipeng Zhao · Zhihui Yu · Yongxi Kang · Jin Wang · Chuntian Cheng · Huaying Su |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A hydro-PV complementary dispatch model is proposed. |
语言:
中文摘要
水电和光伏发电作为中国两大主导的可再生能源,在电力系统中具有显著的互补价值,对实现碳减排和应对气候变化至关重要。然而,大规模光伏并网加剧了负荷波动增大、系统灵活性需求提升以及输电阻塞管理困难等一系列关键问题。为应对上述挑战,本文提出了一种适用于水光互补系统(HPCS)的中短期调度方法,充分利用梯级水电的调节灵活性以及水光之间的互补潜力。首先,构建了一个数学优化模型,以削峰填谷为目标,综合考虑了梯级水电站的水力-电气耦合约束及其在应对光伏出力不确定性时的主动调节约束,旨在优化HPCS的联合运行,利用水光互补特性降低系统出力波动性,保障电力供应的稳定性。随后,针对模型中的多维决策变量,采用极值原理与对偶理论进行等效重构,并通过二型特殊有序集合(SOS2)方法对非线性约束进行线性化处理,从而提升了模型的求解能力与计算效率。最后,将所提模型应用于中国北盘江流域的水光互补系统,制定相应的水光协同调度策略。研究成果可归纳如下:(1)所提出的水电主动调节方法能够保证水光联合出力的稳定性和可调性,使负荷波动减少137.96 MW,充分挖掘了水电灵活性及水光互补的潜在价值;(2)该模型在汛期表现出较高的可靠性,即使面临更为严峻的阻塞管理压力,仍能显著增强系统的削峰能力;(3)模型能够在多个输电通道之间均衡分担阻塞管理压力,相较于传统模型,最多可减少1885.95 MWh的可再生能源弃电风险;(4)该模型能够适应波动性可再生能源(VRE)与输电容量的动态协同增长,是一种缓解大规模水电与VRE并网所引发输电阻塞问题的有前景的技术手段。
English Abstract
Abstract Hydropower and photovoltaic (PV) power, the two dominant renewable energy sources in China, are crucial for decarbonization and climate change mitigation, leveraging their exceptional complementary value in the power system . However, the large-scale integration of PV power exacerbates several key issues concerning increased load variation, enhanced flexibility demand, and challenging congestion management. This study addresses these issues by developing a medium-short-term dispatch approach for a hydro-PV complementary system (HPCS), which leverages the flexibility of cascade hydropower and the potential value of hydro-PV complementarity. Firstly, a mathematical model is developed to optimize peak load shaving, while incorporating hydraulic-electrical coupling constraints and active regulation constraints of cascade hydropower in response to PV uncertainty. The model endeavors to optimize the hybrid operation of HPCS, exploiting hydro-PV complementarity to mitigate output variability and ensure a stable electricity supply. Subsequently, multidimensional decision variables in the model are subjected to an equivalent reformulation, leveraging the extremal principle and duality theory, and the nonlinear constraints are linearized by the special ordered sets of type 2 constraints. These methods enhance the model’s solvability and computational efficiency. Finally, the proposed model is applied to the Beipan HPCS in China, determining the hydro-PV complementary dispatch strategies. The research findings can be summarized as follows: (1) the developed hydropower active regulation method ensures stable and adjustable hydro-PV output, reducing load variation by 137.96 MW and fully exploiting hydropower flexibility and hydro-PV complementarity; (2) the model demonstrates high reliability by significantly enhancing peak shaving during the flood season, even in the face of increased congestion management challenges; (3) the model balances congestion management difficulties across multiple channels, outperforming the conventional model by reducing the risk of renewable energy curtailment by up to 1885.95 MWh; (4) the model adapts to the dynamic combined growth of VRE and transmission capacity, making it a promising technology for alleviating transmission congestion caused by large-scale hydropower and VRE.
S
SunView 深度解读
该水光互补调度技术对阳光电源ST储能系统和SG光伏逆变器产品线具有重要应用价值。研究中的主动调节策略可启发我司开发更智能的GFM/GFL控制算法,通过PowerTitan储能系统替代或增强水电灵活性调节功能,应对大规模光伏接入带来的负荷波动。多通道阻塞管理方法可优化iSolarCloud平台的预测性维护和调度策略,降低弃光风险达1885.95MWh。三电平拓扑和SiC功率器件技术可提升系统在复杂电网约束下的快速响应能力,为水光火储多能互补场景提供核心解决方案。