← 返回
储能系统技术 ★ 5.0

通过敏感性与技术经济分析释放电动与混合动力拖拉机的潜力

Unlocking the potential of electric and hybrid tractors via sensitivity and techno-economic analysis

作者 Dilawer Ali · Ricardode Castro · Reza Ehsani · Stavros Vougioukas · Peng Wei
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A techno-economic tool identifies favorable conditions for deploying e-tractors
语言:

中文摘要

摘要 当前使用的大多数农用车辆仍依赖基于柴油的动力系统,这是空气污染的主要来源之一。电气化被视为实现这些非道路车辆脱碳的潜在解决方案,但其推广受到储能系统和充电基础设施较高初始成本的制约。为了更准确地量化这些障碍,本文提出了一种技术经济分析工具,可帮助农民评估电动与混合动力拖拉机的所有权总成本。本文开发了一个实用的拖拉机仿真模型,用于预测年度能耗/燃料消耗以及NOx排放;同时构建了一个经济模型,用于估算购置、运行和维护的全部成本。针对混合动力拖拉机的能量管理,本文提出了一种基于模型预测控制的新型功率分配策略,使设计者能够在考虑电动传动系统运行约束的同时,平衡能效与NOx排放性能。此外,我们提出了新颖的决策图谱,使农民能够快速识别在平均负载和年工作时间方面的作业区域,在这些区域内部署电动/混合动力拖拉机具有经济可行性。为考虑拖拉机运行条件的变异性,我们进行了多参数变化的确定性敏感性分析以及所有权总成本的随机性分析。该工具基于加州某农场的实际数据,采用多种任务工况进行验证。结果表明,与柴油动力系统相比,电动拖拉机在轻负荷农业作业(发动机负载低于20%)中更具成本效益;而混合动力系统则在中等负荷作业(发动机负载介于20%至60%之间)中表现出更高的经济性。

English Abstract

Abstract The majority of agricultural vehicles in use today still rely on diesel-based propulsion, a major source of air pollution. Electrification is seen as a potential solution for decarbonizing these off-road vehicles but is hampered by higher upfront costs in energy storage and charging infrastructure. To better quantify these barriers, this paper proposes a techno-economic tool that can assist farmers in evaluating the total costs of ownership of electric and hybrid tractors. A pragmatic simulation model of the tractor is developed to predict the annual energy/fuel consumption and NOx emissions, while an economic model estimates the total acquisition, operation, and maintenance costs. For managing the energy in hybrid tractors, a new power split strategy based on model predictive control is developed, allowing the designer to balance energy efficiency and NOx emissions, while taking into account operational constraints of the electric powertrain . Additionally, we propose novel decision maps that allow farmers to quickly identify operating regions (in term of average load and yearly working time) where the deployment of electric/hybrid tractors is economically viable. To account for variability in the tractor’s operational conditions, we conduct both a deterministic sensitivity analysis with multi-parameter variation and a stochastic analysis of the total cost of ownership. The tool is validated with different mission profiles based on data from a California farm. The results show that, compared to diesel powertrains, electric tractors are more cost-effective for light-duty farming activities (engine loads less than 20%). On the other hand, hybrid powertrains are more economical for medium-duty tasks, where engine loads range from 20% to 60%.
S

SunView 深度解读

该研究对阳光电源农业电气化解决方案具有重要参考价值。混合动力拖拉机的能量管理策略可借鉴至储能系统的多能源协调控制,ST系列PCS可优化电池与柴油发电机的功率分配。研究中的模型预测控制(MPC)技术与阳光电源GFM控制策略相契合,可应用于农业场景的充电站智能调度。轻载工况下电动拖拉机的经济性验证,为推广农用充电桩及分布式光储系统提供数据支撑,iSolarCloud平台可集成作业负荷预测实现精准能量管理。