← 返回
光伏发电技术
★ 5.0
基于质子交换膜电解槽的大规模太阳能光伏电站制氢、储运系统优化以最小化向城市输送氢气的成本
Strategic optimization of large-scale solar PV parks with PEM Electrolyzer-based hydrogen production, storage, and transportation to minimize hydrogen delivery costs to cities
| 作者 | B.Karthikeyan · G.Praveen Kumara1 · Soumen Bas · Shubhankar Sinh · Shikhar Tyagi · Param Kamat · Rajendran Prabakaran · Sung Chul Kim |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A detailed feasibility analysis of a [green hydrogen](https://www.sciencedirect.com/topics/engineering/green-hydrogen "Learn more about green hydrogen from ScienceDirect's AI-generated Topic Pages") economy was established. |
语言:
中文摘要
摘要 本研究提出了一种面向大规模、从产地到消费端的绿色氢气生产的单线优化框架,通过整合太阳能光伏电站、质子交换膜(PEM)电解槽、储能及运输系统,旨在最小化向城市地区输送氢气的成本。所提出的太阳能-绿色氢气系统包括光伏(PV)面板为PEM电解槽供电,以及平板集热器(FPC)为PEM提供预热后的水。储能环节包含压缩机与储氢罐,氢气则通过卡车运输至终端用户。通过对满足每日1000千克氢气生产目标所需的制氢与压缩能耗进行分析,本研究结合基础设施、太阳能资源可用性及能源需求参数,在印度境内确定了光伏与FPC装置的最佳选址与安装面积。全面的参数化研究探讨了年际间电力消耗、氢气产量及系统效率的变化,并对氢气生产设施内的总能量流进行了详细评估。此外,优化研究通过评估若干大都市区的氢气需求,确定具有最低氢气平准化成本(LCOH)的地理位置,并分析成本构成要素,从而实现运输成本的最小化。主要研究结果包括识别出PEM系统的最优设计变量,例如更高的运行温度、更薄的膜厚度以及更小的单电池面积,这些均有助于提升系统性能指标。研究表明,PEM电解槽在350 bar压力下进行氢气生产需6.5 MW电能,额外还需0.25 MW用于压缩。所提出的4.8 MW PEM系统容量要求包括0.08 km²的光伏面积、250 m²的FPC面积、4456个阵列和11个PEM电池。太阳能-电能转换效率范围为13.3%–14.8%,太阳能-氢气转换效率范围为6.8%–9.5%。氢气生产与运输的平准化成本(LCOH)介于€17.48/kg至€24.33/kg之间,其中储氢罐成本对整体成本影响显著。
English Abstract
Abstract This research presents a single-line optimization framework for large-scale, site-to-consumption green hydrogen production , integrating solar photovoltaic parks with proton exchange membrane (PEM) electrolyzers, storage, and transportation systems to minimize hydrogen delivery costs to urban cities. The proposed solar-to-green hydrogen system features photovoltaic (PV) panels generating electricity for the PEM electrolyzer and flat plate collectors (FPC) providing preheated water to the PEM. Storage options include a compressor with a storage tank, and delivery is facilitated by trucks transporting hydrogen to end-users. By analyzing power consumption for hydrogen production and compression to meet a daily target of 1000 kg, this research identifies optimal locations and areas for solar PV and FPC installations in India, considering infrastructural, solar availability, and energy demand parameters. A comprehensive parametric study investigates annual variations in power consumption, hydrogen generation , and system efficiency, alongside a detailed evaluation of the total energy flow within the hydrogen production facility. Additionally, an optimization study minimizes transportation costs by assessing hydrogen demand in selected metropolitan areas, determining locations with the lowest levelized cost of hydrogen (LCOH), and analyzing cost-sharing components. Key findings include the identification of optimal design variables for the PEM system, such as higher operating temperatures , reduced membrane thickness, and minimized cell area, leading to enhanced performance metrics. The study reveals that a PEM electrolyzer requires 6.5 MW of electrical energy for hydrogen production and an additional 0.25 MW for compression at 350 bar. The proposed 4.8 MW PEM capacity system requirements include 0.08 km 2 of PV area, 250 m 2 of FPC area, 4456 arrays, and 11 PEM cells . Efficiency ranges for solar-to-power and solar-to‑hydrogen generation are identified as 13.3–14.8 % and 6.8–9.5 %, respectively, with LCOH for production and transportation varying between €17.48/kg and €24.33/kg, heavily influenced by storage tank costs.
S
SunView 深度解读
该光伏制氢系统优化研究对阳光电源具有重要战略价值。SG系列光伏逆变器可为PEM电解槽提供6.5MW稳定电力输出,ST系列储能PCS可平抑光伏波动确保制氢连续性。研究揭示的13.3-14.8%光电转换效率与9.5%最高制氢效率,为阳光电源开发光储氢一体化解决方案提供参考。1500V高压系统和MPPT优化技术可降低0.08km²光伏阵列的能量损耗,iSolarCloud平台可实时监控从发电到制氢全链路效率,助力降低17.48-24.33欧元/kg的氢气成本,推动绿氢产业商业化落地。