← 返回
光伏发电技术 ★ 5.0

优化办公建筑半透明光伏幕墙的采光、天空视野和能源产出:四个气候区的比较研究

Optimizing daylight, sky view and energy production in semi-transparent photovoltaic facades of office buildings: A comparative study in four climate zones

作者 Masoud Ghasaban · Mansour Yeganeh · Mozhgan Irani
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 An innovative method has been developed to comprehensively evaluate the performance of the south facade
语言:

中文摘要

摘要 光伏电池在建筑立面中的应用可将太阳辐射转化为电能。通过整合透光表面(窗户)与非透光表面(幕墙),可以提高发电效率。优化窗户的透明度有助于改善视觉舒适性并降低能耗。本研究提出一种评估南向办公建筑立面的方法,该立面采用非透光非晶硅(a-Si)和半透明薄膜硅光伏电池。通过Ladybug工具中的Windows软件以及EnergyPlus和Radiance引擎进行模拟,分析这些光伏系统对发电量、视觉舒适性和能耗的影响。研究分为两个主要阶段:第一阶段:该阶段探讨了四种不同的窗墙比(WWRs)作为透光表面,每种均结合五种不同透明度水平的半透明光伏电池。分析涵盖了四种气候条件(赫尔辛基、多伦多、利雅得和特贝萨),以评估其在电力生产、视觉舒适性和能源消耗方面的性能表现。该阶段为第二阶段的优化奠定了基础。第二阶段:采用基于NSGA-II的遗传算法,针对每个全球水平辐照度(GHI)区域,寻找透光(窗户)与非透光(幕墙)表面的最佳组合。目标是提升视觉舒适性、减少能源消耗,并增强光伏发电能力。在赫尔辛基,最优窗墙比为83%至87%,透明度水平为10%至25%,窗户距地面高度为0.1至0.2米,距天花板高度为0.1至0.15米。在多伦多,最优窗墙比为83%至85%,透明度水平为50%至90%,窗户距地面高度为0.2至0.3米,距天花板高度为0.1至0.15米。在利雅得,最优窗墙比为44%至49%,透明度水平为30%至70%,以减少眩光影响,窗户距地面高度为1.3至1.5米。在特贝萨,窗墙比范围为43%至47%,透明度水平为50%至80%,窗户距地面高度为1.10至1.35米,距天花板高度为1.20至1.35米。

English Abstract

Abstract Photovoltaic cells in building facades convert solar radiation into electricity. Increased output is achieved by integrating both light-transmitting (windows) and non-transmitting (façade) surfaces. Optimizing window transparency improves visual comfort and reduces energy use. This study introduces a method to assess a south-facing office façade using opaque a-Si and translucent thin-film silicon photovoltaic cells. It analyzes their effects on electricity production, visual comfort, and energy consumption through simulations using Windows software, and the EnergyPlus and Radiance engines in Ladybug tools. The study consists of two main phases: Phase I: This phase explored four different window-to-wall ratios (WWRs) as light-transmitting surfaces, each with semi-transparent photovoltaic cells at five transparency levels. The analysis covered four climatic conditions (Helsinki, Toronto, Riyadh, and Tebessa) to evaluate performance in electricity generation , visual comfort, and energy consumption. This phase established a basis for optimization in Phase II. Phase II: A genetic algorithm based on NSGA-II was used to find the optimal combination of light-transmitting (windows) and non-transmitting (façade) surfaces for each GHI zone. The goal was to improve visual comfort, reduce energy consumption, and enhance photovoltaic electricity production. In Helsinki, the optimal WWR was 83 % to 87 %, with transparency levels of 10 % to 25 %, and window distances of 0.1 to 0.2 m from the floor and 0.1 to 0.15 m from the ceiling. In Toronto, the WWR ranged from 83 % to 85 %, with transparency levels of 50 % to 90 %, and window distances of 0.2 to 0.3 m from the floor and 0.1 to 0.15 m from the ceiling. In Riyadh, the optimal WWR was 44 % to 49 %, with transparency levels of 30 % to 70 % to reduce glare, and a window distance of 1.3 to 1.5 m from the floor. In Tebessa, the WWR ranged from 43 % to 47 %, with transparency levels of 50 % to 80 %, and window distances of 1.10 to 1.35 m from the floor and 1.20 to 1.35 m from the ceiling.
S

SunView 深度解读

该研究对阳光电源BIPV光伏系统集成具有重要参考价值。针对不同气候区的窗墙比与透光率优化方案,可指导SG系列组串式逆变器在建筑立面应用中的MPPT策略优化,特别是半透明薄膜组件的低照度发电特性。研究中的多目标遗传算法优化思路,可融入iSolarCloud平台的智能设计模块,为办公建筑光伏立面提供因地制宜的系统配置方案,平衡发电效率、视觉舒适度与建筑能耗,推动公司在BIPV细分市场的解决方案创新。