← 返回
风电变流技术
★ 5.0
通过协同偏航与尖速比优化实现风电场主动尾流控制
Wind farm active wake control via concurrent yaw and tip-speed ratio optimization
| 作者 | Amir Hosseini · Daniel Trevor Cannon · Ahmad Vasel-Be-Hagh |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Concurrently controlling wake direction and strength was investigated. |
语言:
中文摘要
摘要 气动损失,亦称为尾流损失,是阻碍风能发电在全球电力生产中占比从目前的个位数百分比进一步提升的最主要因素。本研究探讨了集成实时偏航角与尖速比(TSR)优化以应对该问题的有效性。这一联合自适应控制策略此前从未被研究过,它不仅放大了单独采用偏航和尖速比优化各自的优势,还缓解了二者在应用中面临的一些挑战。所提出的自适应优化策略结合粒子群优化算法与稳态下的流动转向及诱导模型(FLORIS),根据实时风况持续调节各风力机的偏航角和尖速比。该优化算法通过动态地使部分风力机转子产生非对准,将其尾流引导偏离下游机组,从而提升风电场的整体能量产出;同时,它降低另一子组风力机的尖速比至非最优工况,使其尾流中保留更多动能,供下游机组捕获利用。模型结果显示,在瑞典近海风电场Lillgrund实施集成化的偏航-尖速比优化后,年发电量(AEP)提升了4.85%。该增益超过了单独实施偏航优化或尖速比优化的预测效果,后者分别仅带来3.9%和2.7%的提升。此外,该策略还降低了风电场平均的偏航非对准程度和尖速比水平,从而带来了重要的结构载荷减轻和环境效益。
English Abstract
Abstract Aerodynamic loss, also known as wake loss, is the most significant loss hindering wind energy from rising beyond its current single-digit percent contribution to global electricity generation . This research explores the effectiveness of integrating real-time yaw and tip-speed ratio (TSR) optimizations to address this issue. This combined adaptive control strategy, which has never been investigated before, amplifies the advantages of individual yaw and TSR optimizations while addressing some of their challenges. The proposed adaptive optimization strategy leverages particle swarm optimization and the FLOw Redirection and Induction in Steady State (FLORIS) model to continuously adjust individual wind turbines' yaw angle and TSR based on real-time wind conditions. This optimization algorithm enhances the farm's energy production by dynamically misaligning a subset of the turbine's rotor to redirect their wake away from their downstream counterparts. Simultaneously, it decreases the tip-speed ratio of a different subgroup of turbines to non-optimal conditions, leaving more power in their wake for their downstream counterparts to harvest. According to the models, implementing the integrated yaw-TSR optimization at Lillgrund, an offshore wind farm in Sweden, increased the annual energy production (AEP) by 4.85 %. This improvement surpassed the outcomes predicted for individual yaw or TSR optimizations, which yielded a 3.9 % and 2.7 % increase, respectively. This also decreased the farm-averaged yaw misalignment and TSR, which offer essential structural and environmental advantages.
S
SunView 深度解读
该风电场主动尾流控制技术对阳光电源风电变流器产品具有重要借鉴价值。研究通过偏航角和叶尖速比协同优化实现4.85%的年发电量提升,其核心思路可应用于我司风电变流器控制策略优化:通过实时调节变流器输出特性动态调控叶尖速比,配合偏航系统实现风场级协同控制。该粒子群优化算法可集成至iSolarCloud平台,结合我司三电平拓扑和先进控制技术,实现风场群控的预测性维护与发电效率最大化,为进军海上风电市场提供技术储备。