← 返回
光伏发电技术
★ 5.0
ZigZag光伏声屏障的性能研究与生命周期评估:迈向IIPV应用的大规模定制化
Performance study and LCA of a ZigZag PV noise barrier: Towards mass-customization of IIPV applications
| 作者 | Fallon Colberts · Sara Bouguerr · Arnaud Wieclawski · Marta Casasola Paes · Wim Bran · Sven Mullenders · Hareim Ahm · Richardde Jong · Tatjana Vavilkin · Wimvan de Wallg · Christian Mass-Protzen · Jeroen Bergman · Jörgen Boumans · Michaël Daenen · Zeger Vroon |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 378 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏隔音屏障 交通噪音 可再生电力 ZigZag光伏隔音屏障 潜力研究 |
语言:
中文摘要
摘要 光伏声屏障(PVNB)具有降低交通噪声和产生可再生电能的双重功能。本研究探讨了ZigZag型光伏声屏障(ZigZag PVNB)的应用潜力。由Wallvision公司开发的ZigZag Solar产品已在建筑立面应用中展现出高发电效率和优良美学设计的多重优势。在声屏障应用中,ZigZag结构除了具备上述优势外,还可通过在结构内部填充Rockwool材料,进一步提升安全性和降噪性能。在荷兰格莱嫩Brightlands Chemelot Campus园区设计并建造了一座ZigZag光伏声屏障,并在荷兰气候条件下对其电气性能进行了自动监测。实测数据与模拟结果进行了对比,从而实现了模型的优化。由于ZigZag结构中使用了Rockwool材料,需对热模型进行优化以减小实测与模拟之间的最大功率点电压(V MPP)的显著差异。采用新型光纤布拉格(Fiber Bragg)技术进行的温度测量表明,实测电池温度与模拟输入温度之间的差异在10至20 °C之间。在优化热模型后,ZigZag光伏声屏障的输出功率预测精度显著提高,年理论发电量可达1066 kWh/kWp。2023年6月至2024年4月期间的实测数据显示,实际年发电量达到873 kWh/kWp。实测年发电量与理论值之间18%的偏差主要归因于电缆损耗、逆变器等系统损失。针对包含混凝土基础设施、太阳能组件、ZigZag盒体、电缆及转换器在内的多种全球系统配置所开展的生命周期评估(LCA)表明,根据本研究建立的模型,其全球变暖潜势(GWP)介于190至290 kg CO₂ eq/MWh之间,相较于荷兰和德国当前的电力结构显示出明显的环境优势。此外,生产与安装不同长度ZigZag光伏声屏障系统所需的能耗预计可在6至10年内回收(不超过系统总预期寿命的30%)。系统平衡部分(BOS),特别是直流/直流转换器和储能电池系统,其次是安装ZigZag光伏声屏障所用的混凝土构件,是该示范项目碳足迹的主要贡献者。通过采用更清洁的电池技术或储能系统,有望进一步降低其碳足迹。
English Abstract
Abstract Photovoltaic noise barriers (PVNB) offer dual functionality in reducing traffic noise and generating renewable electricity. In this research, the potential of ZigZag PVNBs has been investigated. The ZigZag Solar product, developed by Wallvision, has proven to offer multiple advantages in energy yield and aesthetics for building façade applications. For noise barrier applications, the ZigZag structure could offer interesting features in safety and noise cancellation (obtained by filling the ZigZag construction with Rockwool material) on top of the advantages in aesthetics and energy yield. A ZigZag PVNB has been designed and constructed at the Brightlands Chemelot Campus in Geleen, after which the electrical performance has been automatically monitored under Dutch climate conditions. The measurements have been compared to simulated data, which allowed optimization of the model. As Rockwool material is used in the ZigZag construction, the thermal model had to be optimized to reduce significant differences in measured and simulated V MPP data. Temperature measurements by a novel Fiber Bragg technology revealed that temperature differences between measured cell temperature and input temperature for the simulations are between 10 and 20 °C. After optimizing the thermal model, the power output of the ZigZag PVNB could be predicted more accurately, resulting in a yearly potential energy yield up to 1066 kWh/kWp. Measured data over the period June 2023 till April 2024 showed an energy yield up to 873 kWh/kWp. A deviation of 18 % between measured yearly energy yield can be related to system losses such as cabling and inverters. Life Cycle Assessment (LCA) of several configurations of a global system, including concrete infrastructure, solar panels, ZigZag cassettes, cabling and converters shows a Global Warming Potential (GWP) score varying from 190 to 290 CO 2 eq/kWh, according to the models developed in this study, indicating its interest compared to the Dutch and German electricity mixes. In addition, the energy required to produce and install the ZigZag PVNB system at various lengths has a predicted payback time of 6–10 years (maximum 30 % of the total expected lifetime). The balance of system, in specific the DC/DC converters followed and battery system) followed by the concrete element on which the ZigZag PVNB was mounted are the largest contributors to the carbon footprint of the ZigZag PVNB demonstrator. The carbon footprint could potentially be reduced by using cleaner battery technologies or energy storage systems.
S
SunView 深度解读
该光伏降噪屏障研究对阳光电源SG系列逆变器和集成应用具有重要参考价值。ZigZag结构因岩棉填充导致10-20°C温差,需优化热模型以提升MPPT精度,这与我司1500V系统温度管理技术高度相关。研究显示系统损耗达18%主要来自线缆和逆变器,验证了我司高效逆变技术的必要性。LCA分析指出DC/DC变换器和储能系统是碳足迹主要来源,正契合我司ST系列PCS和PowerTitan低碳储能方案的优势。该场景可结合iSolarCloud平台实现IIPV应用的智能运维和发电预测优化。