← 返回
储能系统技术
★ 5.0
更正:配备不同碳捕集技术的热电联产植物的植物级和系统级性能
Corrigendum to “Plant and system-level performance of combined heat and power plants equipped with different carbon capture technologies”
| 作者 | Tharun Roshan Kumar · Johanna Beiro · Maximilian Bierman · Simon P. Harvey · Henrik Thunman |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 380 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 碳捕获与封存 生物质热电联产 负二氧化碳排放 二氧化碳捕获技术 区域供热 |
语言:
中文摘要
摘要 在现有生物质燃烧热电联产(bio-CHP)电厂中安装碳捕集与封存(BECCS)能力,特别是那些排放大量生物源CO₂的电厂,可能实现显著数量的负CO₂排放,从而有助于实现气候目标。然而,目前尚不清楚在区域供热(DH)系统中运行的bio-CHP电厂进行大规模BECCS部署时,哪种CO₂捕集技术最为优化。部分原因在于对电厂层面及其所属扩展能源系统中高㶲能载体的感知价值存在不一致的看法。本研究评估了当配备具有本质上不同单位捕获CO₂所需㶲的CO₂捕集系统时,一个位于区域供热系统中的bio-CHP电厂的表现。分析基于现有生物质燃料CHP电厂蒸汽循环以及两种基于化学吸收的CO₂捕集技术的稳态过程模型,后者分别采用热碳酸钾(HPC)和胺类(单乙醇胺或MEA)溶剂。所建立的模型用于量化电厂在电厂级和系统级的能源与㶲性能。此外,还考虑了从CO₂捕集与调节单元中回收余热的可能性,以及将大型热泵集成到电厂内或在本地区域供热系统中使用家用热泵的可行性。结果表明,在适合区域供热的温度水平下,HPC工艺比MEA工艺具有更多的可回收余热(分别为约3.58 MJ/kgCO₂,captured 和2.09 MJ/kgCO₂,captured),这与以往类似比较研究中报告的数值一致。然而,以电厂边界内的能量性能作为评价指标会偏向于HPC工艺。综合考虑热能和电能输出,配备HPC和MEA的bio-CHP电厂的能量效率分别估计为90%和76%。而从电厂边界内的㶲性能角度分析,则凸显了胺基捕集工艺相对于HPC工艺的显著优势。配备MEA捕集工艺的CHP电厂㶲效率较高(约35%),相比之下,配备HPC工艺的电厂仅为约26%,这意味着前者在调整其产品输出(即热能和电力生产)以及实现负CO₂排放方面具有相对更优的能力。此外,先进的胺类溶剂使得BECCS电厂能够在单位热量需求增加相对较小的情况下,捕集其总CO₂排放量的90%以上。
English Abstract
Abstract Installing carbon capture and storage (BECCS) capability at existing biomass-fired combined heat and power (bio-CHP) plants with substantial emissions of biogenic CO 2 could achieve significant quantities of the negative CO 2 emissions required to meet climate targets. However, it is unclear which CO 2 capture technology is optimal for extensive BECCS deployment in bio-CHP plants operating in district heating (DH) systems. This is in part due to inconsistent views regarding the perceived value of high-exergy energy carriers at the plant level and the extended energy system to which it belongs. This work evaluates how a bio-CHP plant in a DH system performs when equipped with CO 2 capture systems with inherently different exergy requirements per unit of CO 2 captured from the flue gases. The analysis is based upon steady-state process models of the steam cycle of an existing biomass-fired CHP plant as well as two chemical absorption-based CO 2 capture technologies that use hot potassium carbonate (HPC) and amine-based (monoethanolamine or MEA) solvents. The models were developed to quantify the plant energy and exergy performances, both at the plant and system levels. In addition, heat recovery from the CO 2 capture and conditioning units was considered, as well as the possibility of integrating large-scale heat pumps into the plant or using domestic heat pumps within the local DH system. The results show that the HPC process has more recoverable excess heat (∼3.58 MJ/kgCO 2,captured ) than the MEA process (2.09 MJ/kgCO 2,captured ) at temperature levels suitable for district heating, which is consistent with values reported in previous similar comparative studies. However, using energy performance within the plant boundary as a figure of merit is biased in favor of the HPC process. Considering heat and power, the energy efficiency of the bio-CHP plant fitted with HPC and MEA are estimated to be 90 % and 76 %, respectively. Whereas considering exergy performance within the plant boundary, the analysis emphasizes the significant advantage the amine-based capture process has over the HPC process. Higher exergy efficiency for the CHP plant with the MEA capture process (∼35 %) compared to the plant with the HPC process (∼26 %) implies a relatively superior ability of the plant to adapt its product output, i.e., heat and power production, and negative-CO 2 emissions. Furthermore, advanced amine solvents allow the BECCS plant to capture well beyond 90 % of its total CO 2 emissions with relatively low increased specific heat demand.
S
SunView 深度解读
该BECCS热电联产碳捕集研究对阳光电源储能系统具有重要启示。文中揭示的火用效率优化思路可应用于ST系列PCS的能量管理策略:在区域供热场景中,PowerTitan储能系统可通过热电解耦技术提升系统灵活性,类似MEA工艺的高火用效率优势。研究中的热泵集成方案与阳光电源储能+热泵耦合解决方案高度契合,可优化工业园区综合能源系统的负荷响应能力。建议将火用分析方法引入iSolarCloud平台,实现多能互补系统的深度优化与预测性运维。