← 返回
光伏发电技术 ★ 5.0

整合微气候模拟与建筑能耗模拟及太阳能光伏潜力评估:城市设计的参数化分析与优化

Integrating microclimate modelling with building energy simulation and solar photovoltaic potential estimation: The parametric analysis and optimization of urban design

语言:

中文摘要

摘要 气象条件、植被、城市街区形态、交通系统和建筑设计等关键城市设计因素及其相互作用,需要被深入探讨,以调控城市微气候、提高建筑能效以及优化太阳能光伏(PV)发电能力,从而提升整体建筑/城市能源性能。本研究首先结合高维模型表示法(High Dimensional Model Representation, HDMR)、Sobol采样方法与自助法(bootstrapping)策略,提取影响微气候模拟的最重要影响因素。随后,提出一个参数化建模与设计优化框架,通过探索多种城市街区形态设计方案,在缓解局部气候变化(即城市热岛效应)的同时,提升整体建筑能源性能(即建筑能耗与光伏电力生成)。该集成化的城市性能优化平台进一步应用于香港一个高密度城区进行实证演示。研究结果表明,建筑密度(BD)、建筑高度(BH)、光伏发电量以及城市热岛效应之间存在显著相关性。建筑高度与累积城市热岛强度(AUHII)呈强正相关关系(R² = 0.4512),同时与光伏发电量也表现出更强的正相关性(R² = 0.6720)。建筑能耗与建筑密度之间存在一定程度的相关性(相关系数为0.2052),但几乎不受建筑高度的影响。通过聚类分析,针对不同的优化目标确定了最优的城市街区设计方案。本文的研究成果对可持续城市形态设计具有重要的指导意义。

English Abstract

Abstract Key urban design factors of the meteorological condition , vegetation, urban block form, transportation and building design as well as their interaction need to be explored to regulate urban microclimate , building energy efficiency , and solar photovoltaic (PV) generation for enhancing the overall building/urban energy performance. This study first incorporates the High Dimensional Model Representation (HDMR), Sobol sampling and bootstrapping strategy to extract the most important factors for microclimate modelling. Then, a parametric modelling and design optimization framework is proposed to improve the overall building energy performance (i.e. building energy consumption and PV power generation) while mitigating local climate change (i.e. urban heat island effect) by exploring various urban block form designs. The integrated urban performance optimization platform is further demonstrated in a high-density district in Hong Kong. The research results demonstrate a significant correlation between building density (BD), building height (BH), photovoltaic power generation, and the urban heat island effect . Building height shows a strong positive correlation with accumulated urban heat island intensity (AUHII) (R 2 = 0.4512) and photovoltaic power generation (R 2 = 0.6720). Building energy consumption is found to be correlated with building density, with a correlation coefficient of 0.2052, but it is barely influenced by building height. From clustering analyses, optimal urban block designs are determined for different optimization objectives. The findings presented in this paper have important indication for sustainable urban form design.
S

SunView 深度解读

该研究整合微气候建模与光伏发电潜力评估,对阳光电源SG系列逆变器的城市级部署具有重要指导意义。研究揭示建筑高度与光伏发电量强相关(R²=0.672),可优化我司1500V系统在高密度城区的选址与容量配置。结合建筑密度对能耗的影响分析,阳光电源PowerTitan储能系统可与光伏形成互补,通过iSolarCloud平台实时监测微气候数据,动态优化MPPT策略,提升城市综合能源效率,为智慧城市一体化解决方案提供数据支撑。