← 返回
风电变流技术 ★ 5.0

基于可解释对比学习的数据增强趋势-波动表征用于风电功率预测

Data-augmented trend-fluctuation representations by interpretable contrastive learning for wind power forecasting

语言:

中文摘要

摘要 数据增强可以通过分析风电功率数据的统计特性来扩展数据规模,为预测模型提供更丰富的输入信息,从而提高预测精度。然而,现有的数据增强方法仅学习原始数据的概率分布,难以从数据中捕捉并表征复杂的变化趋势与波动特征。此外,来自不同风电场的异构数据模式会影响预测模型的泛化能力,而深度学习模型的黑箱结构在实际应用中也缺乏可信度。因此,本文提出一种新颖的可解释趋势-波动表征对比学习框架(ICoTF),用于风电功率预测。具体而言,ICoTF包含预训练阶段和回归阶段。首先,在预训练阶段设计了基于对比学习的数据增强方法,并借助时频域对比损失函数,从风电功率数据中提取趋势与波动表征。在回归阶段,这些表征被输入到一个个性化的岭回归模型中,并通过均方误差(MSE)损失对模型参数进行微调,以实现高性能的预测。进一步地,将最优传输算法融入对比损失中,以揭示各输入特征之间的相互作用以及每个特征对风电功率预测的重要性,从而实现可解释的学习过程。所提出的模型在两个数据集上进行了评估,实验结果表明,与其它基准模型相比,ICoTF在预测精度、泛化能力以及可解释性方面均表现出优越性能。

English Abstract

Abstract Data augmentation can expand wind power data by analyzing their statistical characteristics, providing richer input information for forecasting models, thereby improving the forecasting accuracy . However, existing data augmentation methods only learn the probability distribution of original data, making it difficult for them to capture and represent complex trend and fluctuation features from data. Additionally, heterogeneous data patterns from different wind farms affect the generalization of forecasting models and the black-box structure of deep learning models is not trustworthy in practical applications. Therefore, a novel interpretable contrastive learning framework of trend-fluctuation representations (ICoTF) is proposed for wind power forecasting . Specifically, ICoTF includes a pretraining stage and a regression stage. Initially, data augmentation based on contrastive pretraining is designed to extract trend and fluctuation representations from wind power data, assisted by a time-frequency domain contrastive loss . In the regression stage, these representations are fed into a personalized ridge regression model, and its parameters are fine-tuned by mean squared error (MSE) loss to achieve high-performance forecasting. Furthermore, an optimal transport algorithm is integrated into the contrastive loss to reveal the interactions between various input features and the importance of each feature to wind power forecasts, thus achieving interpretable learning. The proposed model is evaluated on two datasets, and the results demonstrate that ICoTF exhibits superior forecasting accuracy, generalization ability and interpretability compared to other benchmark models .
S

SunView 深度解读

该风电功率预测技术对阳光电源储能系统具有重要应用价值。ICoTF框架的趋势-波动特征提取能力可应用于ST系列PCS的功率预测模块,通过对比学习增强数据表征,提升PowerTitan储能系统的充放电策略优化精度。其可解释性设计符合iSolarCloud平台的预测性维护需求,特征重要性分析可优化GFM/GFL控制策略中的功率波动抑制算法。时频域对比损失方法可迁移至光储混合系统的多源数据融合预测,增强跨场站泛化能力,为智慧能源管理提供可信赖的决策支持。