← 返回
风电变流技术 ★ 5.0

利用沿海上升流信息改进的海上风能时空预测

Improved spatio-temporal offshore wind forecasting with coastal upwelling information

作者 Feng Ye · Travis Miles · Ahmed Aziz Ezzat
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 380 卷
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A regime-switching model for offshore wind speed and power forecasting is proposed.
语言:

中文摘要

准确的短期风速预测对于风能可靠运行及其并入电网至关重要。对于海上风电场而言,海洋环境带来的额外不确定性使得获取高质量预测变得更加复杂。一个典型的例子是沿海上升流这一物理现象,它是一种常见的海洋学过程:持续的沿岸风将较冷、更深的海水向上输送,从而影响垂直风廓线,并进一步影响海上风力涡轮机的发电输出。本文提出了一种时空风速预测模型,该模型利用从卫星影像中提取的上升流信息,以提高海上短期风速和功率预测的精度。该方法基于状态转换建模框架,能够学习海上风场在不同状态下的特有特征,包括相关的海上气象效应以及时空相关性。通过在美国中大西洋地区的真实数据进行预测评估——该区域频繁发生上升流事件,且具有显著的海上风电开发活动——结果表明,引入上升流信息的模型所生成的日内和日前预测,其精度显著高于忽略此类物理相关信息的基准模型。与最先进的时空预测方法相比,平均预测误差降低了3.76%;与经典时间序列方法相比,最大误差降低可达27.53%。研究结果证明,构建针对海上环境独特物理机制定制化的风速预测模型具有重要价值。

English Abstract

Abstract Accurate short-term wind forecasts are critical for the reliable operation and integration of wind energy into the electric grid. For offshore wind farms, additional environmental uncertainties introduced by the oceanic environment can complicate the task of obtaining high-quality forecasts. A relevant example is the physical phenomenon of coastal upwelling which is a common oceanographic process wherein persistent along-coast winds drive the colder, deeper waters upwards, affecting the vertical wind profile and consequently, the power output of offshore wind turbines. This work introduces a spatio-temporal wind forecasting model which utilizes upwelling information derived from satellite imagery in order to improve short-term offshore wind speed and power predictions. Rooted in regime-switching modeling, the proposed approach learns regime-specific features of the offshore wind field, including relevant offshore weather effects and space–time correlations. Forecast evaluations using real-world data from the United States Mid-Atlantic—a region with frequent upwelling events and significant offshore wind energy activity—show that the intra-day and day-ahead forecasts from the upwelling-informed model are of significantly higher accuracy than those from baseline models that overlook such physically relevant information. Average forecast errors are reduced by 3.76% relative to state-of-the-art space–time methods, and by up to 27.53% when compared to classical time-series approaches. The results attest to the merit of formulating offshore-specific wind forecast models that are tailored to the unique physics of the offshore environment.
S

SunView 深度解读

该海上风电时空预测技术对阳光电源储能系统具有重要价值。通过融合海洋上升流等环境因素,预测精度提升3.76%-27.53%,可显著优化ST系列储能变流器的充放电策略和PowerTitan系统的能量管理。该regime-switching建模思路可借鉴至iSolarCloud平台,结合GFM控制技术实现海上风储协同的精准功率预测与调度,提升电网友好性和系统经济性,为海上新能源场站提供更智能的预测性运维方案。