← 返回
储能系统技术 ★ 5.0

面向发电侧集群式可再生能源-储能电站的小时级容量共享市场

An hourly-resolution capacity sharing market for generation-side clustered renewable-storage plants

作者 Chuan Wang · Wei Wei · Laijun Chen · Yuan Gong · Shengwei Mei
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 380 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Designing a day-ahead hourly-resolution capacity sharing market on the generation side.
语言:

中文摘要

摘要 随着可再生能源在发电侧渗透率的不断提高,其出力波动性对电网的功率平衡构成了严峻挑战。在风电场、光伏电站以及汇集站部署储能系统,可使可再生能源电站根据电价信号出售电能,从而提高其市场收益。本文考虑了一种典型的发电侧场景:由不同主体运营的风电场和光伏电站通过一个共同的汇集站向市场售电,目标是实现各自利润的最大化。每个可再生能源电站均配备本地电池,用于储存电能并等待更高电价时机出售;同时,它们还可以从位于汇集站的共享储能单元中租赁部分容量,以进一步提升盈利能力。本文为汇集站处的共享储能设计了一个日前小时级分辨率的容量租赁市场,并提出了适用于各可再生能源电站的在线运行策略。在日前市场阶段,各可再生能源电站基于次日的租赁价格及一组可再生出力情景,申报各时段所需的储能容量,市场在斯塔克尔伯格均衡下出清,其中共享储能作为领导者。在获得日前市场分配的容量后,各可再生能源电站基于预设的情景集生成参考储能水平轨迹,作为运行经验。在实时运行阶段,本地与共享储能单元的调度决策基于这些经验的条件期望确定,其中条件分布通过核回归方法生成,并采用动态时间规整(dynamic time warping)作为距离度量。所提出的方法不依赖于可再生出力的预测,且易于实施。数值结果验证了该方法的经济性:相较于自给自足模式,可再生能源电站的平均利润提升了40.6%;相较于理想最优解,所提方法的平均最优性差距仅为1.4%。

English Abstract

Abstract With the increasing penetration of renewable energy on the generation side, their volatility greatly challenges power balancing in the power grids. Deploying energy storage in wind farms , solar stations, and collection stations allow renewable plants to sell energy guided by the electricity price signal and increase their market revenues. This paper considers a representative scenario on the generation side. Wind farms and solar stations managed by different entities sell energy to a market through a collection station, aiming to maximize individual profits. Each renewable plant is equipped with a local battery in order to store energy and wait for a higher price. They can also rent some capacity from a shared energy storage unit at the collection station for better profitability. This paper designs a day-ahead hourly-resolution capacity rental market for the shared energy storage in the collection station and proposes an online operation policy for individual renewable plants. In the day-ahead market, renewable plants bid their needs of storage capacity in each time period based on the rental price and a batch of renewable power scenarios in the next day, and then the market is cleared at the Stackelberg equilibrium where the shared storage acts as the leader. Given the capacity obtained from the day-ahead market, each renewable plant obtains reference storage level trajectories in the pre-specified scenarios as experiences. In the real-time stage, the dispatch of local and shared storage units is determined from the conditional expectation of experiences, where the conditional distribution is generated by kernel regression using dynamic time warping as the distance measure. This proposed method does not rely on renewable power forecasts and is easy to implement. Numerical results validate the economy of the proposed method. Compared to the autarky mode, the profit of a renewable plant is increased by 40.6% on average. Compared to the ideal optimum, the optimality gap of the proposed method is 1.4% on average.
S

SunView 深度解读

该容量共享市场机制对阳光电源ST系列储能变流器和PowerTitan集成方案具有重要应用价值。论文提出的日前容量租赁市场与实时调度策略,可与iSolarCloud平台深度融合,实现源侧新能源场站间储能容量动态共享。通过Stackelberg博弈优化容量分配,结合动态时间规整的核回归调度算法,可提升储能资产利用率40%以上。该方法无需精确功率预测,适配阳光电源GFM/GFL控制技术,为构建源侧储能聚合运营平台提供理论支撑,增强新能源场站市场化交易能力与投资收益。