← 返回
光伏发电技术 ★ 5.0

概率性地理参照网格建模:一种融合可用系统测量数据的贝叶斯方法

Probabilistic geo-referenced grid modeling: A Bayesian approach for integrating available system measurements

语言:

中文摘要

摘要 随着新气候目标的持续推进,配电网络正日益整合户用光伏(PV)系统、电动汽车(EV)家用充电装置以及热泵(HPs)。这些设备的接入常常导致电网拥塞问题,需要采取适当的缓解措施。然而,在缺乏现有基础设施的数字化且及时更新的模型的情况下,设计此类措施具有挑战性,而这种情况在低压(LV)层级尤为常见。本文提出了一种新颖的两阶段贝叶斯方法,利用现有的系统测量数据建立具有地理参照能力的潮流(PF)就绪型电网模型的概率分布。我们在德国舒特尔瓦尔德的一个居民区展示了所提出方法的应用效果。研究发现,整合现有系统测量数据能够有效提升模型分布的质量,使得生成的潜在电网模型更准确地反映实际基础设施状况。此外,我们还展示了该方法在评估特定电网段因高比例屋顶光伏接入而导致过电压问题方面的实际应用价值。与当前先进基线方法相比,后者要么无法识别任何过电压问题,要么结论不确定,而采用本文提出的方法整合可用系统测量数据则可提供更为可靠的评估结果。

English Abstract

Abstract With the ongoing implementation of new climate targets, power distribution grids are increasingly integrating behind-the-meter photovoltaic (PV) systems, electric vehicle (EV) home chargers, and heat pumps (HPs). The integration of these solutions can often result in grid congestion issues, requiring appropriate mitigation measures . Designing these measures can be challenging in the absence of a digital and up-to-date model of the existing infrastructure, which is often the case at the low-voltage (LV) level. In this work, we introduce a novel two-stage Bayesian approach for establishing a probability distribution of geo-referenced power flow (PF)-ready grid models using available system measurements. We demonstrate the proposed approach in a residential region in Schutterwald, Germany . We find that integrating available system measurements can effectively enhance the quality of the distribution, yielding potential grid models that more accurately align with the existing infrastructure. Moreover, we showcase the practical utility of the proposed approach for assessing overvoltage within a specific grid segment subject to high rooftop PV adoption. While state-of-the-art baselines either fail to identify any overvoltage issues or are inconclusive, integrating available system measurements using the proposed approach offers a more reliable assessment.
S

SunView 深度解读

该贝叶斯电网建模技术对阳光电源配电网解决方案具有重要价值。针对户用光伏、充电桩、热泵等分布式资源接入导致的电网拥塞问题,可与iSolarCloud平台深度融合:利用SG系列逆变器和充电站的实测数据,通过概率建模精准识别过电压风险区域,指导ST储能系统的优化配置。该方法可增强虚拟电厂场景下的电网状态感知能力,为GFM控制策略提供更可靠的拓扑参数,提升分布式能源聚合调控的安全性与经济性,支撑源网荷储协同优化决策。