← 返回
储能系统技术
★ 5.0
地下氢气储存:技术进展、挑战与机遇综述
Underground hydrogen storage: A review of technological developments, challenges, and opportunities
| 作者 | Shadfar Davoodi · Mohammed Al-Shargabi · David A. Woo · Promise O.Long · Mohammad Mehr · V. S. Rukavishnikov |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 381 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | UHS options include [salt caverns](https://www.sciencedirect.com/topics/engineering/salt-cavern "Learn more about salt caverns from ScienceDirect's AI-generated Topic Pages") aquifers depleted reservoirs and abandoned mines. |
语言:
中文摘要
摘要 氢能(HE)是大规模储能的一种有前景的解决方案,尤其适用于将间歇性可再生能源整合到全球能源系统中。实现这一转型的关键推动因素是地下氢气储存(UHS),该技术具备大规模储存氢气(H₂)的潜力;然而,由于存在技术、运行和工程上的复杂性,其实际部署仍面临重大挑战。针对这些挑战,本文对UHS技术进行了全面分析,重点探讨了其可行性、性能表现以及相关障碍。本文考虑了氢气独特的物理化学性质——如密度、黏度、扩散性、溶解度和吸附能力——及其对地下储存过程的影响。随后评估了将多种地质构造改造用于UHS的可行性,包括枯竭的油气储层、盐穴、含水层以及废弃煤矿。对于每种地质构造,本文评估了相关的风险、不确定性以及钻井与完井技术,并强调了各环境中的特定挑战。为确保有效的储存,本文分析了基本的封存机制——构造封存、残余封存、溶解封存和矿物封存——并比较了它们在不同地质条件下的表现。影响UHS性能的技术因素也被识别出来,包括岩石物理表征、润湿性效应、垫底气需求,以及氢气注入与采出循环的影响。本文还讨论了与UHS相关的主要挑战,包括盖层密封性、断层稳定性、储层泄漏、井筒完整性、地球化学与微生物反应、地质力学效应、不稳定的流体驱替、微泄漏以及钻井复杂性。通过识别知识空白并提出有针对性的研究方向,本综述为参与UHS系统设计与实施的研究人员、从业者和政策制定者提供了一个结构化的框架。
English Abstract
Abstract Hydrogen energy (HE) is a promising solution for large-scale energy storage, particularly for integrating intermittent renewable energy sources into the global energy system . A key enabler of this transition is underground hydrogen storage (UHS), which has the potential to store hydrogen (H 2 ) at scale; however, its deployment remains a critical challenge due to technical, operational, and engineering complexities. In response to these challenges, this review provides a comprehensive analysis of UHS technologies, focusing on their feasibility, performance, and associated obstacles. The review considers the unique physicochemical properties of H 2 —such as density, viscosity , diffusion, solubility, and adsorption capacity—and their effects on subsurface storage. It then evaluates the feasibility of repurposing various geological formations for UHS, including depleted gas/oil reservoirs, salt caverns , aquifers, and abandoned coal mines. For each formation, the associated risks, uncertainties, and drilling and completion technologies are assessed, emphasizing the challenges specific to each environment. To ensure effective storage, fundamental trapping mechanisms—structural, residual, solubility, and mineral trapping—are analyzed, and their performance is compared across different geological settings. Technical factors influencing UHS performance are identified including petrophysical characterization, wettability effects, cushion gas requirements, and the impacts of H 2 injection and production cycles. Key challenges associated with UHS, including caprock sealing, fault stability, reservoir leakage, wellbore integrity, geochemical and microbial reactions, geomechanical effects, unstable fluid displacements, microleakage, and drilling complexities, are also discussed. By identifying knowledge gaps and proposing targeted research directions, this review provides a structured framework for researchers, practitioners, and policymakers involved in the design and implementation of UHS systems.
S
SunView 深度解读
地下储氢技术为阳光电源储能系统提供长周期、大规模能量存储新思路。ST系列PCS可与氢储能系统协同,实现可再生能源消纳:电解制氢时作整流逆变,燃料电池发电时作并网变流。盐穴、枯竭油气藏等地质储氢方案可作PowerTitan储能站的季节性调峰补充,解决锂电储能时长受限问题。氢能与电化学储能混合配置,需GFM控制技术保障电网稳定性,iSolarCloud平台可集成氢储能监控模块,实现氢-电耦合系统智能运维,拓展新能源全场景应用边界。