← 返回
储能系统技术 ★ 5.0

开发一种利用超临界CO₂作为冷却介质的新型电池热管理系统

Developing a novel battery thermal management system utilizing supercritical CO2 as the cooling medium

作者 Morteza Khoshvaght Aliabadi · Parvaneh Ghodrati · Yong Tae Kang
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 381 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Development of a novel BTMS using supercritical CO2 for cylindrical Li-Ion cells.
语言:

中文摘要

摘要 本研究首次提出将超临界二氧化碳(sCO₂)作为圆柱形锂离子电池用电池热管理系统(BTMS)中的冷却剂,并对其性能进行了全面评估,与传统冷却剂进行了对比分析。采用经过验证的基于计算流体动力学(CFD)的数值方法,系统研究了冷却单元数量、几何参数以及冷却条件等关键因素的影响。湍流模拟采用SST k-ω模型,sCO₂随温度和压力变化的物性参数通过美国国家标准与技术研究院(NIST)REFPROP程序获取,覆盖指定的压力与温度范围。结果表明,将冷却单元数量从1个增加到3个时,电池模块的最大温差降低了17.1 K;而进一步从3个增加到5个时,该参数仅额外改善1.3 K。冷却通道直径对电池模块温度影响较小,但增大冷却单元的高度和间距可有效提升温度均匀性。与去离子水、发动机油和乙二醇相比,sCO₂显著提升了冷却性能:传热系数分别提高了2.69倍、9.97倍和6.11倍,同时压降分别降低了1.47倍、4.58倍和14.52倍。此外,与去离子水、发动机油和乙二醇相比,sCO₂使电池最大温度分别降低了4.39 K、13.45 K和9.55 K。综上所述,本研究发现基于sCO₂的BTMS能耗降低不仅源于其极低的压降特性,还归因于无需配置冷却剂温度恢复系统,从而进一步简化了系统结构并提升了整体能效。

English Abstract

Abstract This study pioneers the utilization of supercritical Carbon Dioxide (sCO 2 ) as a coolant within Battery Thermal Management Systems (BTMSs) designed for cylindrical lithium-ion cells, offering a comprehensive evaluation of its performance compared to conventional coolants. A validated CFD-based numerical approach is employed to analyze the effects of key factors, including the number of cooling units, geometric parameters , and cooling conditions. The SST k - ω model is employed for simulating turbulence, and the variable thermophysical properties of sCO 2 are obtained from the NIST REFPROP program, based on the specified ranges of pressure and temperature. The results illustrate that increasing the number of cooling units from 1 to 3 reduces the maximum temperature difference by 17.1 K, but further increasing from 3 to 5 units only slightly improves this parameter by 1.3 K. The cooling channel diameter has little impact on battery module temperature, but increasing the height and pitch of cooling units improves temperature uniformity. Compared to deionized-water, engine-oil, and ethylene-glycol, sCO 2 significantly enhances cooling performance. It increases the heat transfer coefficient by factors of 2.69, 9.97, and 6.11, respectively, while reducing the pressure drop by factors of 1.47, 4.58, and 14.52, respectively. Additionally, sCO 2 decreases the maximum temperature by 4.39 K, 13.45 K, and 9.55 K compared to deionized-water, engine-oil, and ethylene-glycol, respectively. In conclusion, this research reveals that the reduction in energy consumption in sCO 2 -based BTMSs is driven not only by the notably low pressure drop but also by the elimination of the need for a coolant temperature recovery system.
S

SunView 深度解读

该超临界CO2电池热管理技术对阳光电源储能系统具有重要应用价值。相比传统冷却介质,sCO2可将传热系数提升2.69-9.97倍,压降降低1.47-14.52倍,显著降低系统能耗。可应用于PowerTitan等大型储能系统和ST系列PCS的热管理优化,特别适合高功率密度场景。该技术无需冷却液回收系统,可简化储能柜热管理架构,提升系统可靠性和经济性,为阳光电源下一代液冷储能产品提供创新方向,配合iSolarCloud平台可实现热管理系统的智能预测性维护。