← 返回
光伏发电技术
★ 5.0
基于虚拟光伏样本构建的考虑表后光伏的净负荷非监督分解方法
Unsupervised disaggregation of aggregated net load considering behind-the-meter PV based on virtual PV sample construction
| 作者 | Ziyu Qu · Xinxin Ge · Jinling Lu · Fei Wang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 381 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | An unsupervised aggregated net load decoupling method based on virtual PV sample construction is proposed. |
语言:
中文摘要
摘要 大多数分布式光伏发电系统(PV)采用表后安装(behind-the-meter, BTM)方式,仅配备单个电表的部署方案使得配电系统运营商只能监测净负荷,而无法获取表后光伏的发电量。因此,表后光伏装置的日益普及对配电系统规划以及局部供需平衡产生了负面影响。然而,现有的净负荷分解方法主要依赖昂贵的监测设备和高分辨率传感器,在实际应用中面临隐私问题、数据多样性不足以及通信障碍等挑战。本文提出一种针对聚合净负荷的非监督分解方法,仅利用净负荷数据和外生变量即可实现表后光伏出力与实际负荷的精确分离。首先,开发了一种数据驱动的方法以构建用户的实际负荷样本矩阵;其次,提出一种基于自反馈解耦算法(self-feedback decoupling algorithm, SFDA)的虚拟光伏样本构造方法,以应对表后光伏资源不可见的问题。该方法通过最小化长期分解残差进行自反馈学习,构建虚拟光伏样本,并生成虚拟光伏样本矩阵;最后,利用模型学习结果,结合上下文监督源分离(contextually supervised source separation, CSSS)算法实现净负荷的分解。本研究采用了真实开源数据进行验证,分析结果表明,所提方法显著提升了非监督算法的解耦精度,同时消除了传统监督算法所存在的一系列问题,拓展了非监督解耦方法的应用范围。
English Abstract
Abstract Most of the distributed photovoltaics (PV) are installed behind the meter (BTM), single-meter deployments permit distribution system operators to monitor only the net load and exclude the BTM PV generation, so the growing prevalence of BTM PV installations negatively affects distribution system planning and the local balance of supply and demand. However, existing methods for net load disaggregation mainly rely on the installation of expensive monitoring devices and high-resolution sensors, and face challenges such as privacy concerns, data diversity, and communication barriers. In this paper, an unsupervised method for aggregated net load disaggregation is proposed that achieves accurate separation of BTM PV outputs and actual loads using only net load data and exogenous variables. First, a data-driven method is developed to construct the actual load sample matrix of customers. Then, a virtual PV sample construction method based on the self-feedback decoupling algorithm (SFDA) is proposed to tackle the invisibility of BTM PV resources. The method performs self-feedback learning and constructs the virtual PV samples by minimizing the long-term decomposition residuals, and generates the virtual PV sample matrix. Finally, the model learning results are employed to achieve net load disaggregation through the contextually supervised source separation (CSSS) algorithm. The study utilized real open-source data whereby analyses reveal the method greatly enhances the decoupling accuracy of unsupervised algorithms. Furthermore, it eliminates a series of problems associated with traditional supervised algorithms and expands the scope of unsupervised decoupling methods.
S
SunView 深度解读
该BTM光伏解耦技术对阳光电源iSolarCloud平台及SG系列逆变器具有重要应用价值。通过无监督算法实现净负荷分解,可增强智慧运维平台对分布式光伏实际发电量的监测能力,无需额外传感器即可优化MPPT策略。该方法可集成至iSolarCloud的预测性维护模块,提升电表后端光伏资产的可观测性,为ST储能系统的充放电策略提供更精准的负荷预测数据,助力配电网供需平衡优化及虚拟电厂聚合调度能力提升。