← 返回
控制与算法
★ 5.0
基于自适应蒸馏增量学习与注意力MobileNetV2网络的“一对所有”拒绝识别算法在电力终端多标签识别中的应用
Electricity terminal multi-label recognition with a “one-versus-all” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network for non-invasive load monitoring
| 作者 | Linfei Yin · Nannan Wang · Jishen Li |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 382 卷 |
| 技术分类 | 控制与算法 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Multi-label recognition with “One-Versus-All” rejection recognition is proposed. |
语言:
中文摘要
随着分布式可再生能源接入智能电网,分布式系统及新能源发电的不确定性严重影响了电网的稳定运行。需求侧管理是解决分布式用电问题的有效手段,因此监测接入系统负荷类型已成为当前研究热点。负荷监测包括侵入式负荷监测(ILM)和非侵入式负荷监测(NILM)。目前,NILM缺乏增量学习能力且识别准确率较低。为此,本文提出一种基于自适应蒸馏增量学习与注意力MobileNetV2网络的“一对所有”拒绝识别算法用于电力终端多标签识别(ET-MR “OVA” RR-ADIL-AMN)。该算法融合了多标签识别与“一对所有”拒绝识别算法(MR “OVA” RR)、支持向量机(SVM)、自适应蒸馏增量学习(ADIL)以及注意力MobileNetV2网络(AMN),实现对电力终端设备的有效识别。AMN由通道注意力机制(CAM)、协同注意力机制(co-attention)和MobileNetV2构成。其中,CAM显著增强了对不同特征通道的表征能力;协同注意力机制则聚焦于空间维度,提取特征图在不同位置的信息。MobileNetV2通过反向残差结构、深度可分离卷积(DSC)和线性瓶颈层优化计算效率与模型规模。将注意力机制(AMs)引入MobileNetV2后,模型不仅保持了原有的高效计算特性,还能通过动态调整特征通道权重和空间信息权重,更高效地处理输入数据,优于原始MobileNetV2网络。ADIL包含自适应蒸馏选择器(ADS)和变学习率控制器(VLRC)。ADS通过引入蒸馏策略选择合适的蒸馏样本,使算法在吸收新类别信息的同时保留已有知识的学习成果,有助于平衡新旧知识之间的迁移,避免灾难性遗忘。VLRC可在协同注意力机制的特定方向上降低学习率,防止增量学习过程中的参数震荡。MR “OVA” RR算法采用“一对所有”策略,将多标签问题转化为多个二分类问题(BCPs),并通过比较SVM输出的置信概率值与设定阈值完成拒绝识别操作。将拒绝识别策略融入多标签识别中,可保留分类器不可靠的决策结果,从而提升负荷类型识别的准确性。实验结果表明,在完成全部10种负荷类型的增量学习任务后,ADIL相比重新训练节省了49分钟时间。在集成MR “OVA” RR算法后,首轮模型的平均准确率达到97.13%。当拒绝识别的样本被输入一个简化的MobileNetV2模型进行再识别时,整体算法的准确率进一步提升至99.84%。与其他神经网络相比,AMN在准确率、精确率、召回率和F1分数方面分别达到98.38%、98.27%、98.31%和98.38%,表现出最优性能,相较于对比方法分别提升了2.78%、2.21%、2.53%和2.78%。
English Abstract
Abstract With the integration of distributed renewable energy into smart grids, the uncertainty of distributed systems and new energy generation seriously affect the stable operation of power grids. Demand-side management is a method for solving distributed electricity usage issues, thus monitoring the types of loads connected to the system has become a hot research topic. Load monitoring includes invasive load monitoring (ILM) and non-invasive load monitoring (NILM). Currently, NILM lacks an incremental capability and has a low recognition accuracy. The study proposes an electricity terminal multi-label recognition with a “One-Versus-All” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network (ET-MR “OVA” RR-ADIL-AMN). The algorithm combines multi-label recognition with a “One-Versus-All” rejection recognition algorithm (MR “OVA” RR), support vector machine (SVM), adaptive distillation increment learning (ADIL), attention MobileNetV2 network (AMN) for electricity terminal recognition. The AMN consists of channel attention mechanism (CAM), co-attention, and MobileNetV2. The CAM significantly enhances the ability to characterize different channels, while the co-attention mechanism focuses on the spatial dimension to extract information about the feature map at different locations. The MobileNetV2 network is employed to optimize computational efficiency and model size through an inverted residual structure, depth separable convolution (DSC), and a linear bottleneck layer. The integration of attention mechanisms (AMs) into MobileNetV2 allows the model not only to maintain the original computational efficiency but also to process input data more efficiently than the MobileNetV2 network by dynamically readjusting the weights of the feature channels and spatial information. ADIL includes an adaptive distillation selector (ADS) and a variable learning rate controller (VLRC). The ADS can select suitable distillation samples by introducing distillation strategies. The distillation strategy allows the algorithm to absorb new categories of information while retaining the learning of old knowledge, contributing to balancing the transfer of old and new knowledge and avoiding catastrophic forgetting. The VLRC can reduce the learning rate in the specific direction of the co-attention mechanism, preventing shocks during the incremental learning process. The MR “OVA” RR algorithm adopts a “One-Versus-All” strategy to convert multi-label problems into many binary classification problems (BCPs). The rejection recognition operation is accomplished by comparing the confidence probability values output by SVM with a set threshold. By incorporating a rejection recognition strategy into multi-label recognition, unreliable decisions of the classifier are retained, consequently enhancing the accuracy of load type recognition. Experimental results show that ADIL saves 49 min compared to retraining after completing the incremental learning task for all 10 load types. After integrating the MR “OVA” RR algorithm, the average accuracy of the first-round model reaches 97.13 %. When the rejection recognition samples are inputted into a simple MobileNetV2 model for identification, the accuracy of the overall algorithm reaches 99.84 %. In contrast to other neural networks , the AMN demonstrates optimal performance with accuracy, precision, recall, and F1 scores of 98.38.60 %, 98.27 %, 98.31 %, and 98.38 % respectively, showing improvements of 2.78 %, 2.21 %, 2.53 %, and 2.78 %.
S
SunView 深度解读
该非侵入式负荷监测技术对阳光电源智慧能源管理系统具有重要价值。可集成至iSolarCloud平台实现用电侧精细化管理:在储能系统(ST系列PCS/PowerTitan)中应用该多标签识别算法,可精准识别并网负荷类型,优化充放电策略;结合分布式光伏(SG系列逆变器)场景,通过增量学习动态适应新接入设备,提升需求侧响应能力;其轻量化MobileNetV2架构和99.84%识别精度,适合部署于充电桩等边缘设备,支撑源网荷储协同控制,为构建零碳智慧能源生态提供数据支撑。